K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

26 tháng 12 2021

Bài 3: 

a: Xét tứ giác ABOC có

\(\widehat{ABO}+\widehat{ACO}=180^0\)

Do đó: ABOC là tứ giác nội tiếp

22 tháng 1 2022

btvn lớp 9a5 không thấy hả:v

17 tháng 9 2016

\(\sqrt{\sqrt{5-\sqrt{3-\sqrt{29-12\sqrt{5}}}}}=\sqrt{\sqrt{5-\sqrt{3-\sqrt{\left(2\sqrt{5}-3\right)^2}}}}\)

\(=\sqrt{\sqrt{5-\sqrt{3-\left(2\sqrt{5}-3\right)}}}=\sqrt{\sqrt{5-\sqrt{6-2\sqrt{5}}}}=\sqrt{\sqrt{5-\sqrt{\left(\sqrt{5}-1\right)^2}}}\)

\(=\sqrt{\sqrt{5-\left(\sqrt{5}-1\right)}}=\sqrt{\sqrt{6-\sqrt{5}}}\)

17 tháng 9 2016

= 1,392869546

9 tháng 11 2021

Bài 1: hình 2:

áp dụng HTL ta có: \(BH.BC=AB^2\Rightarrow20x=144\Rightarrow x=\dfrac{36}{5}\)

\(x+y=BC\Rightarrow\dfrac{36}{5}+y=20\Rightarrow y=\dfrac{64}{5}\)

Bài 2:

hình 4:

BC=BH+HC=1+4=5

áp dụng HTL ta có: \(BH.BC=AB^2\Rightarrow1.5=AB^2\Rightarrow x=\sqrt{5}\)

áp dụng HTL ta có: \(HC.BC=AC^2\Rightarrow4.5=AC^2\Rightarrow y=2\sqrt{5}\)

hình 6:

Áp dụng HTL ta có: \(BH.HC=AH^2\Rightarrow4x=25\Rightarrow x=\dfrac{25}{4}\)

 

15 tháng 12 2023

Bài IV:

1: Xét tứ giác MAOB có

\(\widehat{MAO}+\widehat{MBO}=90^0+90^0=180^0\)

=>MAOB là tứ giác nội tiếp

=>M,A,O,B cùng thuộc một đường tròn

2: Xét (O) có

MA,MB là các tiếp tuyến
Do đó: MA=MB

=>M nằm trên đường trung trực của AB(1)

Ta có: OA=OB

=>O nằm trên đường trung trực của AB(2)

Từ (1) và (2) suy ra MO là đường trung trực của BA

=>MO\(\perp\)AB tại H và H là trung điểm của AB

Xét ΔMAO vuông tại A có AH là đường cao

nên \(MH\cdot MO=MA^2\left(3\right)\)

Xét (O) có

ΔACD nội tiếp

AD là đường kính

Do đó: ΔACD vuông tại C

=>AC\(\perp\)CD tại C

=>AC\(\perp\)DM tại C

Xét ΔADM vuông tại A có AC là đường cao

nên \(MC\cdot MD=MA^2\left(4\right)\)

Từ (3) và (4) suy ra \(MA^2=MH\cdot MO=MC\cdot MD\)

3: Ta có: \(\widehat{MAI}+\widehat{OAI}=\widehat{OAM}=90^0\)

\(\widehat{HAI}+\widehat{OIA}=90^0\)(ΔAHI vuông tại H)

mà \(\widehat{OAI}=\widehat{OIA}\)

nên \(\widehat{MAI}=\widehat{HAI}\)

=>AI là phân giác của góc HAM

Xét ΔAHM có AI là phân giác

nên \(\dfrac{HI}{IM}=\dfrac{AH}{AM}\left(5\right)\)

Xét ΔOHA vuông tại H và ΔOAM vuông tại A có 

\(\widehat{HOA}\) chung

Do đó: ΔOHA đồng dạng với ΔOAM

=>\(\dfrac{OH}{OA}=\dfrac{HA}{AM}\)

=>\(\dfrac{OH}{OI}=\dfrac{AH}{AM}\left(6\right)\)

Từ (5) và (6) suy ra \(\dfrac{OH}{OI}=\dfrac{IH}{IM}\)

=>\(HO\cdot IM=IO\cdot IH\)

21 tháng 4 2016

bấm máy tính thấy có 1 nghiệm x=0

28 tháng 2 2022

b) 

Để hệ có nghiệm duy nhất \(\Leftrightarrow m\ne-2\)

Khi đó \(\left\{{}\begin{matrix}2x-y=1\\mx+y=5\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}2x-y=1\\\left(m+2\right)x=6\end{matrix}\right.\)

\(\Rightarrow\left\{{}\begin{matrix}x=\frac{6}{m+2}\\y=2x-1=\frac{10-m}{m+2}\end{matrix}\right.\)

Để x;y là 2 số đối nhau \(\Leftrightarrow x+y=0\)

\(\Leftrightarrow\frac{6}{m+2}+\frac{10-m}{m+2}=0\Rightarrow16-m=0\Rightarrow m=16\)