K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

c: Ta có: \(\sqrt{x+4\sqrt{x-4}}=5\)

\(\Leftrightarrow\sqrt{x-4}+2=5\)

\(\Leftrightarrow\sqrt{x-4}=3\)

\(\Leftrightarrow x-4=9\)

hay x=13

26 tháng 9 2021

c: Ta có: √x+4√x−4=5x+4x−4=5

⇔√x−4+2=5⇔x−4+2=5

⇔√x−4=3⇔x−4=3

⇔x−4=9⇔x−4=9

hay x=13

 

NV
27 tháng 7 2021

2.1

ĐKXĐ: \(x\ge-\dfrac{1}{16}\)

\(x^2-x-20-2\left(\sqrt{16x+1}-9\right)=0\)

\(\Leftrightarrow\left(x-5\right)\left(x+4\right)-\dfrac{32\left(x-5\right)}{\sqrt{16x+1}+9}=0\)

\(\Leftrightarrow\left(x-5\right)\left(x+4-\dfrac{32}{\sqrt{16x+1}+9}\right)=0\) (1)

Do \(x\ge-\dfrac{1}{16}\Rightarrow\left\{{}\begin{matrix}\dfrac{32}{\sqrt{16x+1}+9}< \dfrac{32}{9}\\x+4\ge-\dfrac{1}{16}+4=\dfrac{63}{16}>\dfrac{32}{9}\end{matrix}\right.\)

\(\Rightarrow x+4-\dfrac{32}{\sqrt{16x+1}+9}>0\)

Nên (1) tương đương:

\(x-5=0\)

\(\Leftrightarrow x=5\)

Câu 2.2, 2.3 đề lỗi không dịch được

Bài 2:

Xét ΔABC vuông tại C có

\(CB=BA\cdot\sin60^0=12\cdot\dfrac{\sqrt{3}}{2}=6\sqrt{3}\left(cm\right)\)

6 tháng 12 2021

Bài 8:

\(1,P=\dfrac{x+3\sqrt{x}+2+2x-4\sqrt{x}-2-5\sqrt{x}}{\left(\sqrt{x}-2\right)\left(\sqrt{x}+2\right)}=\dfrac{3x-6\sqrt{x}}{\left(\sqrt{x}-2\right)\left(\sqrt{x}+2\right)}\\ P=\dfrac{3\sqrt{x}\left(\sqrt{x}-2\right)}{\left(\sqrt{x}-2\right)\left(\sqrt{x}+2\right)}=\dfrac{3\sqrt{x}}{\sqrt{x}+2}\\ 2,P=2\Leftrightarrow2\sqrt{x}+4=3\sqrt{x}\Leftrightarrow\sqrt{x}=4\\ \Leftrightarrow x=16\left(tm\right)\)

Bài 9:

\(a,M=\dfrac{x-1}{\sqrt{x}\left(\sqrt{x}-1\right)}:\dfrac{\sqrt{x}+1}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)}\\ M=\dfrac{\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)}{\sqrt{x}\left(\sqrt{x}-1\right)}\cdot\left(\sqrt{x}-1\right)\\ M=\dfrac{x-1}{\sqrt{x}}\\ b,M>0\Leftrightarrow x-1>0\left(\sqrt{x}>0\right)\\ \Leftrightarrow x>1\)

Bài 10:

\(a,A=\dfrac{\sqrt{\left(x+3\right)^2}}{x+3}=\dfrac{\left|x+3\right|}{x+3}\)

Với \(x\ge-3\Leftrightarrow A=\dfrac{x+3}{x+3}=1\)

Với \(x< -3\Leftrightarrow A=\dfrac{-\left(x+3\right)}{x+3}=-1\)

\(b,B=\dfrac{2}{x-1}\cdot\dfrac{\left|x-1\right|}{2\left|x\right|}\)

Với \(0< x< 1\Leftrightarrow B=\dfrac{2}{x-1}\cdot\dfrac{-\left(x-1\right)}{2x}=-\dfrac{1}{x}\)

8 tháng 10 2021

Làm giúp mình với mọi người ơi

18 tháng 10 2021

Mình cần gấp ạ

18 tháng 10 2021

\(13,=\dfrac{\sqrt{3}\left(\sqrt{6}-2\right)}{\sqrt{6}-2}+\dfrac{4\left(\sqrt{3}-1\right)}{2}+12-3\sqrt{3}\\ =\sqrt{3}+2\sqrt{3}-2+12-3\sqrt{3}=10\\ 14,=\dfrac{12\left(4+\sqrt{10}\right)}{6}-3\sqrt{10}+\dfrac{\sqrt{10}\left(\sqrt{5}+1\right)}{\sqrt{5}+1}\\ =8+2\sqrt{10}-3\sqrt{10}+\sqrt{10}=8\\ 15,=\dfrac{2x-6\sqrt{x}+x+3\sqrt{x}-3x-9}{\left(\sqrt{x}+3\right)\left(\sqrt{x}-3\right)}\\ =\dfrac{-3\left(\sqrt{x}+3\right)}{\left(\sqrt{x}-3\right)\left(\sqrt{x}+3\right)}=\dfrac{-3}{\sqrt{x}-3}\)

\(16,=\dfrac{x+2\sqrt{x}-3-x+3\sqrt{x}-4\sqrt{x}-6}{\left(\sqrt{x}-3\right)\left(\sqrt{x}+3\right)}\\ =\dfrac{\sqrt{x}-9}{\left(\sqrt{x}-3\right)\left(\sqrt{x}+3\right)}\\ 17,=\dfrac{x+3\sqrt{x}+2+2x-4\sqrt{x}-5\sqrt{x}-2}{\left(\sqrt{x}-2\right)\left(\sqrt{x}+2\right)}\\ =\dfrac{3\sqrt{x}\left(\sqrt{x}-2\right)}{\left(\sqrt{x}-2\right)\left(\sqrt{x}+2\right)}=\dfrac{3\sqrt{x}}{\sqrt{x}+2}\)

Bài 14:

a)

Sửa đề: \(AE\cdot AB=AD\cdot AC\)

Xét ΔADB vuông tại D và ΔAEC vuông tại E có 

\(\widehat{BAD}\) chung

Do đó: ΔADB\(\sim\)ΔAEC(g-g)

Suy ra: \(\dfrac{AD}{AE}=\dfrac{AB}{AC}\)

hay \(AE\cdot AB=AD\cdot AC\)(đpcm)

b) Ta có: \(\dfrac{AD}{AE}=\dfrac{AB}{AC}\)(cmt)

nên \(\dfrac{AD}{AB}=\dfrac{AE}{AC}\)

Xét ΔADB vuông tại D có 

\(\cos\widehat{A}=\dfrac{AD}{AB}\)

Xét ΔAED và ΔACB có 

\(\dfrac{AD}{AB}=\dfrac{AE}{AC}\)(cmt)

\(\widehat{A}\) chung

Do đó: ΔAED∼ΔACB(c-g-c)

Suy ra: \(\dfrac{AD}{AB}=\dfrac{ED}{CB}\)(Các cặp cạnh tương ứng tỉ lệ)

hay \(\dfrac{AD}{AB}\cdot BC=DE\)

\(\Leftrightarrow DE=BC\cdot\cos\widehat{A}\)(đpcm)

c) Ta có: \(DE=BC\cdot\cos\widehat{A}\)(cmt)

nên \(DE=BC\cdot\cos60^0=\dfrac{1}{2}BC\)(1)

Ta có: ΔEBC vuông tại E(gt)

mà EM là đường trung tuyến ứng với cạnh huyền BC(M là trung điểm của BC)

nên \(EM=\dfrac{1}{2}BC\)(2)

Ta có: ΔDBC vuông tại D(gt)

mà DM là đường trung tuyến ứng với cạnh huyền BC(M là trung điểm của BC)

nên \(DM=\dfrac{1}{2}BC\)(3)

Từ (1), (2) và (3) suy ra ME=MD=DE

hay ΔMDE đều(đpcm)

1 tháng 7 2021

Dạ em cảm ơn ạ!