Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Bài 3 :
A B S M C P N x y 1 2 z 1 2
a) Kéo dài tia NM và NM cắt BC tại S
Khi đó ta có :
\(\hept{\begin{cases}\widehat{ABC}=\widehat{BSM}\left(\text{ 2 góc so le trong }\right)\\\widehat{MNP}=\widehat{BSM}\left(\text{ 2 góc so le trong }\right)\end{cases}}\Rightarrow\widehat{ABC}=\widehat{MNP}\Rightarrow\widehat{MNP}=40^o\)
b) Vẽ \(\hept{\begin{cases}\text{Bx là tia phân giác của }\widehat{ABC}\\\text{Ny là tia phân giác của }\widehat{MNP}\end{cases}}\)
\(\Rightarrow\widehat{B_1}=B_2=\widehat{N_1}=\widehat{N_2}=\frac{\widehat{ABC}}{2}=\frac{\widehat{MNP}}{2}=\frac{40^o}{2}=20^o\left(\text{do }\widehat{ABC}=\widehat{MNP}\right)\)
Vẽ Sz // Bx => \(\widehat{B_2}=\widehat{S_1}\)
Lại có \(\widehat{BSN}=\widehat{MSP}\Rightarrow\frac{\widehat{BSN}}{2}=\frac{\widehat{MSP}}{2}\Rightarrow\widehat{S_2}=\widehat{N_1}\)mà \(\widehat{S_2}\text{ và }\widehat{N_1}\)là 2 góc so le trong
=> Sz // Ny mà Sz // Bx => Bx // Ny hay tia phân giác của 2 góc \(\widehat{ABC}\text{ và }\widehat{MNP}\)song song nhau
1.Điều kiện : \(x\ge0\)
\(\Rightarrow\hept{\begin{cases}x+3,4>0\\x+2,4>0\\x+7,2>0\end{cases}}\Rightarrow\hept{\begin{cases}\left|x+3,4\right|=x+3,4\\\left|x+2,4\right|=x+2,4\\\left|x+7,2\right|=x+7,2\end{cases}}\)
\(\Rightarrow\left|x+3,4\right|+\left|x+2,4\right|+\left|x+7,2\right|=x+3,4+x+2,4+x+7,2\)
\(=3x+13=4x\)
\(\Rightarrow4x-3x=13\)
\(\Rightarrow x=13\)
Vậy \(x=13\)
2.\(3^{n+3}+3^{n+1}+2^{n+3}+2^{n+2}\)
\(=3^n\left(3^3+3\right)+2^n\left(2^3+2^2\right)\)
\(=3^n\left(27+3\right)+2^n\left(8+4\right)\)
\(=3^n.30+2^n.12\)
\(=6\left(3^n.5+2^n.2\right)⋮6\)
4.a)
- \(3^{34}=3^{30+4}=3^{30}.3^4=3^{3.10}.3^4=\left(3^3\right)^{10}.3^4=27^{10}.3^4\)
\(5^{20}=5^{2.10}=\left(5^2\right)^{10}=25^{10}\)
Vì \(27^{10}>25^{10}\Rightarrow27^{10}.3^4>25^{10}\)
hay \(3^{34}>5^{20}\)
- \(17^{20}=17^{4.5}=\left(17^4\right)^5=83521^5>71^5\)
b)\(2^{300}=2^{3.100}=\left(2^3\right)^{100}=8^{100}\)
\(3^{200}=3^{2.100}=\left(3^2\right)^{100}=9^{100}\)
Vì \(8^{100}< 9^{100}\Rightarrow2^{300}< 3^{200}\)
Trời ơi! Một đóng bài thế này bạn đăng lên 1 năm sau không biết có ai giải rồi hết chưa nữa, đăng từng cái lên thôi nha bạn , vừa nhìn vào đã thấy hoa mắt chóng mặt
`Answer:`
Câu 1.
Thay `x=4` vào `A`, ta được: `A=3.4-9=12-9=3`
`=>` Chọn B.
Câu 2.
Trong tam giác đều sẽ có mỗi góc bằng `60^o` nên sẽ không vuông cân được.
`=>` Chọn D.
Câu 3.
C A B H
Áp dụng định lý Pytago vào tam giác vuông AHB vuông tại H:
\(AB^2=AH^2+BH^2\Leftrightarrow AB^2=6^2+4,5^2=36+\frac{81}{4}=\frac{225}{4}\)
Áp dụng định lý Pytago vào tam giác ACH vuông tại H:
\(AC^2=AH^2+CH^2\Leftrightarrow AC^2=6^2+8^2=36+64=100\)
Ta có: \(BC=BH+HC=4,5+8=\frac{25}{2}\Rightarrow BC^2=\frac{625}{4}\left(1\right)\)
Ta có: \(AB^2+AC^2=\frac{225}{4}+100=\frac{625}{4}\left(2\right)\)
Từ `(1)(2)=>AB^2+AC^2=BC^2`
Vậy `\triangleABC` vuông tại A
`=>` Chọn B.
Câu 4.
Hệ quả của bất đẳng thức tam giác: Trong một tam giác, hiệu độ dài hai cạnh bất kì bao giờ cũng nhỏ hơn độ dài cạnh còn lại.
`=>` Chọn C.
Câu 5.
Áp dụng định lý Pytago: `AB^2+BC^2=AC^2<=>10^2+BC^2=26^2<=>100+BC^2=676<=>BC^2=576<=>BC=24`
`=>` Chọn D.
Câu 6.
Biểu thức đại số bao gồm các phép toán cộng, trừ, nhân, chia, nâng lên lũy thừa, còn có thể viết thành những chữ.
`=>` Chọn D.
Câu 7.
Ta có: `AB<BC<CA=>\hat{C}<\hat{A}<\hat{B}`
`=>` Chọn D.