K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

NV
17 tháng 9 2021

ĐKXĐ:

a. 

\(2x+5\ge0\Rightarrow x\ge-\dfrac{5}{2}\)

b.

\(-7x+14\ge0\Rightarrow x\le2\)

c.

\(x^2-6x+9\ge0\Leftrightarrow\left(x-3\right)^2\ge0\) (luôn đúng)

Biểu thức xác định với mọi x

d.

\(x+8>0\Rightarrow x>-8\)

AH
Akai Haruma
Giáo viên
21 tháng 7 2023

38.

$\sqrt{2006}-\sqrt{2005}=\frac{2006-2005}{\sqrt{2006}+\sqrt{2005}}=\frac{1}{\sqrt{2006}+\sqrt{2005}}< \frac{1}{\sqrt{2005}+\sqrt{2004}}=\frac{2005-2004}{\sqrt{2005}+\sqrt{2004}}=\sqrt{2005}-\sqrt{2004}$

AH
Akai Haruma
Giáo viên
21 tháng 7 2023

39.

$\sqrt{1998}+\sqrt{2000}-2\sqrt{1999}=(\sqrt{2000}-\sqrt{1999})-(\sqrt{1999}-\sqrt{1998})$

$=\frac{1}{\sqrt{2000}+\sqrt{1999}}-\frac{1}{\sqrt{1999}+\sqrt{1998}}$

$< 0$

$\Rightarrow \sqrt{1998}+\sqrt{2000}<2\sqrt{1999}$

Bài 40 bạn làm tương tự câu 38.

25 tháng 1 2022
x-5-4-3-2-1012345
y = -1/4x^2-25/4-4-9/4-1-1/40-1/4-1-9/4-4-25/4

 

a: Xét ΔSBM và ΔSNB có 

\(\widehat{SBM}=\widehat{SNB}\)

\(\widehat{BSM}\) chung

Do đó: ΔSBM\(\sim\)ΔSNB

Suy ra: SB/SN=SM/SB

hay \(SB^2=SM\cdot SN\)

b: Xét (O) có

SA là tiếp tuyến

SB là tiếp tuyến

Do đó: SA=SB

mà OA=OB

nên SO là đường trung trực của AB

=>SO⊥AB

Xét ΔOBS vuông tại B có BH là đường cao

nên \(SH\cdot SO=SB^2=SM\cdot SN\)

26 tháng 10 2023

a: \(A=\dfrac{x^2-\sqrt{x}}{x+\sqrt{x}+1}-\dfrac{2x+\sqrt{x}}{\sqrt{x}}+\dfrac{2\left(x-1\right)}{\sqrt{x}-1}\)

\(=\dfrac{\sqrt{x}\left(x\sqrt{x}-1\right)}{x+\sqrt{x}+1}-\dfrac{\sqrt{x}\left(2\sqrt{x}+1\right)}{\sqrt{x}}+\dfrac{2\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)}{\sqrt{x}-1}\)

\(=\dfrac{\sqrt{x}\left(x+\sqrt{x}+1\right)\left(\sqrt{x}-1\right)}{x+\sqrt{x}+1}-2\sqrt{x}-1+2\sqrt{x}+2\)

\(=\sqrt{x}\left(\sqrt{x}-1\right)+1=x-\sqrt{x}+1\)

b:

\(\dfrac{x}{12}=\dfrac{\left(\sqrt{5}+2\right)\sqrt[3]{17\sqrt{5}-38}}{\sqrt{5}+\sqrt{14-6\sqrt{5}}}\)

\(\Leftrightarrow x\cdot\dfrac{1}{12}=\dfrac{\left(\sqrt{5}+2\right)\left(\sqrt{5}-2\right)}{\sqrt{5}+3-\sqrt{5}}\)

\(\Leftrightarrow\dfrac{x}{12}=\dfrac{1}{3}\)

=>x=36

Khi x=36 thì \(A=36-6+1=37-6=31\)

c: \(B=\dfrac{2\sqrt{x}}{A}=\dfrac{2\sqrt{x}}{x-\sqrt{x}+1}\)

\(B-2=\dfrac{2\sqrt{x}-2x+2\sqrt{x}-2}{x-\sqrt{x}+1}\)

\(=\dfrac{-2x+4\sqrt{x}-2}{x-\sqrt{x}+1}=\dfrac{-2\left(x-2\sqrt{x}+1\right)}{x-\sqrt{x}+1}\)

\(=\dfrac{-2\left(\sqrt{x}-1\right)^2}{\left(\sqrt{x}-\dfrac{1}{2}\right)^2+\dfrac{3}{4}}< 0\)

=>B<2

\(2\sqrt{x}>0;x-\sqrt{x}+1=\left(\sqrt{x}-\dfrac{1}{2}\right)^2+\dfrac{3}{4}>0\)

=>B>0

=>0<B<2

16 tháng 7 2021
ext-9bosssssssssssssssss

Câu 6: Để hàm số y=(1-m)x+3 nghịch biến trên R thì 1-m<0

=>m>1

=>Chọn B

Câu 7: D

Câu 10: (D)//(D')

=>\(\left\{{}\begin{matrix}3m+1=2\left(m+1\right)\\-2\ne-2\left(loại\right)\end{matrix}\right.\Leftrightarrow m\in\varnothing\)

=>Chọn D

Câu 11: \(x^2+2x+2=\left(x+1\right)^2+1>=1>0\forall x\)

=>\(\sqrt{x^2+2x+2}\) luôn xác định với mọi số thực x

=>Chọn A

Câu 12: Để hai đường thẳng y=x+3m+2 và y=3x+2m+3 cắt nhau tại một điểm trên trục tung thì \(\left\{{}\begin{matrix}1\ne3\left(đúng\right)\\3m+2=2m+3\end{matrix}\right.\)

=>3m+2=2m+3

=>m=1

=>Chọn C

31 tháng 10 2021

Bài 5: 

a: BC=10cm

b: HA=4,8cm

HB=3,6(cm)

HC=6,4(cm)

31 tháng 10 2021

Bạn ơi, làm như vậy thì quá ngắn rồi ạ, với lại bạn làm thiếu mất đề bài của mình rồi