K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

NV
12 tháng 12 2021

Xác suất:

a. \(\dfrac{3}{6}.\dfrac{3}{6}=\dfrac{1}{4}\)

b. \(\dfrac{6}{36}=\dfrac{1}{6}\)

c. Xác suất mặt 6 chấm ko xuất hiện lần nào: \(\dfrac{5}{6}.\dfrac{5}{6}=\dfrac{25}{36}\)

Xác suất mặt 6 xuất hiện ít nhất 1 lần: \(1-\dfrac{25}{36}=\dfrac{11}{36}\)

d. Các trường hợp tổng 2 mặt lớn hơn hoặc bằng 10: (6;4), (4;6); (5;5); (5;6);(6;5);(6;6) có 6 khả năng

\(\Rightarrow36-6=30\) khả năng tổng số chấm bé hơn 10

Xác suất: \(\dfrac{30}{36}=\dfrac{5}{6}\)

3 tháng 5 2019

Đáp án A.

Số phần tử của không gian mẫu là Gọi A là biến cố thỏa yêu cầu bài toán.

Phương trình có nghiệm khi và chỉ khi

 

Xét bảng kết quả sau (L – loại, không thỏa; N – nhận, thỏa yêu cầu đề bài):

Dựa vào bảng kết quả trên ta thấy số kết quả thuận lợi cho A là 19.

Vậy xác suất của biến cố A là

13 tháng 10 2017

Chọn B

Gọi Ai : “lần gieo thứ i xuất hiện mặt 6 chấm.”, với


A : “mặt có 6 chấm chỉ xuất hiện trong lần gieo thứ 3” 

 

2 tháng 12 2019

Đáp án A.

Tổng số chấm xuất hiện trong hai lần gieo lớn hơn hoặc bằng 11 khi các kết quả là (6;6), (5;6), (6;5)

Gọi x là xác suất xuất hiện mặt 6 chấm suy ra  x 2  là xác suất xuất hiện các mặt còn lại.

Ta có:  5 x 2 + x   =   1 ⇒ x = - 2 7

Do đó xác suất cần tìm là:  2 7 2 + 2 7 . 1 7 + 1 7 . 2 7 = 8 49 .

31 tháng 3 2023

Ngu

18 tháng 5 2017

Rõ ràng \(\Omega=\left\{\left(i;j\right):1\le i,j\le6\right\}\)

Kí hiệu :

\(A_1:\) "Lần đầu xuất hiện mặt 1 chấm"

\(B_1:\) "Lần thứ hai xuất hiện mặt 1 chấm"

\(C:\) " Tổng số chấm là 6"

\(D:\) "Mặt 1 chấm xuất hiện ít nhất một lần"

a) Ta có \(C=\left\{\left(1,5\right),\left(5,1\right),\left(2,4\right),\left(4,2\right)\left(3,3\right)\right\},P\left(C\right)=\dfrac{5}{36}\)

b) Ta có \(A_1,B_1\) độc lập và \(D=A_1\cup B_1\) nên

\(P\left(D\right)=P\left(A_1\right)+P\left(B_1\right)-P\left(A_1B_1\right)\)

\(=\dfrac{1}{6}+\dfrac{1}{6}-\dfrac{1}{6}.\dfrac{1}{6}=\dfrac{11}{36}\)

1 tháng 1 2019

Gọi Ai là biến cố:” xuất hiện mặt sáu chấm ở lần thứ i”, i=1,2,3 X là biến cố:” có ít nhất một lần xuất hiện mặt thứ 6” thì

Bài tập trắc nghiệm Đại số và Giải tích 11 | Câu hỏi trắc nghiệm Đại số và Giải tích 11

 

 

 

Chọn B

9 tháng 3 2017

Chọn C

Gọi A là biến cố “ Súc sắc xuất hiện mặt chẵn chấm”

20 tháng 2 2017

Đáp án là A.

• Số phần tử của không gian mẫu là n ( Ω )   = 36 .

Gọi A là biến cố thỏa yêu cầu bài toán.

Phương trình x2 + bx + c = 0 có nghiệm khi và chỉ khi ∆   =   b 2   -   4 a c   ≥ 0 ⇔ b 2   ≥   4 a c .

Xét bảng kết quả (L – loại, không thỏa ; N – nhận, thỏa yêu cầu đề bài)

19 tháng 1 2019

Chọn C

Số phần tử của không gian mẫu của phép thử gieo một con súc sắc hai lần liên tiếp là 36.

Để phương trình bậc hai  x 2 + bx + c = 0 có nghiệm là  (*) với 

Gọi A là biến cố chọn cặp số (b;c) thỏa mãn trong đó 

Khi c = 1: Các giá trị của b thỏa mãn điều kiện (*) là: 2,3,4,5,6. Suy ra có: 5 cặp (b,c).

Khi c = 2: Các giá trị của b thỏa mãn điều kiện (*) là: 3,4,5,6. Suy ra có: 4 cặp (b,c).

Khi c = 3: Các giá trị của b thỏa mãn điều kiện (*) là: 4,5,6. Suy ra có: 3 cặp (b,c).

Khi c = 4: Các giá trị của b thỏa mãn điều kiện (*) là: 4,5,6. Suy ra có: 3 cặp (b,c).

Khi c = 5: Các giá trị của b thỏa mãn điều kiện (*) là: 5,6. Suy ra có: 2 cặp (b,c).

Khi c = 6: Các giá trị của b thỏa mãn điều kiện (*) là: 5,6. Suy ra có: 2 cặp (b,c).

Vậy, số cặp (b,c) thỏa mãn điều kiện (*) là 19