Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) Ω = {S1, S2, S3, S4, S5, N1, N2, N3, N4, N5}
b)
A = {S2, S4, S6};
B = {N1, N3, N5}.
Biến cố M:”con súc sắc xuất hiện mặt chẵn chấm và đồng tiền xuất hiện mặt sấp” nên M={2S,4S,6S}.
Chọn đáp án là D
Đáp án C.
Ω = 1 S , 2 S , 2 S , 4 S , 5 S , 6 S , 1 N , 2 N , 3 N , 4 N , 5 N , 6 N
b) Biến cố A xảy ra khi mặt có số chấm không nhỏ hơn 2 xuất hiện
Vậy A={2,3,4,5,6}. Chọn phương án là C
a) Không gian mẫu có dạng
Ω = {SSS, SSN, SNS, NSS, SNN, NSN, NNS, NNN}
b)
A = {SSS, SNS, SSN, SNN};
B = {SSS, NNN};
C = {SSN, SNS, NSS};
D = {NN N } = Ω \ {NNN}.
Gọi B là biến cố: “Tổng số chấm xuất hiện trên bề mặt con súc sắc bằng 12”
Ta thấy
12 = 1 + 5 + 6 = 2 + 4 + 6 = 2 + 5 + 5 = 3 + 3 + 6 = 3 + 4 + 5 = 4 + 4 + 4
Nếu số chấm trên bề mặt 3 con súc sắc khác nhau tức là các trường hợp (1;5;6), (2;4;6), (3;4;5) có 3 ! .3 = 18 cách
Nếu số chấm trên bề mặt 3 con súc sắc có 2 con giống nhau tức là các trường hợp (2;5;5) và (3;3;6) có 3.2 = 6 cách
Nếu số chấm trên bề mặt 3 con súc sắc giống nhau ta có 1 cách gieo duy nhất
⇒ n B = 18 + 6 + 1 = 25 . Vậy P B = n B Ω B = 25 216 .
Chọn A
Không gian mẫu là kết quả của việc gieo đồng thời hai con xúc sắc.
⇒ Ω = {(i; j); 1 ≤ i, j ≤ 6}.
⇒ n(Ω) = 6.6 = 36.
a) Gọi A: “Cả hai con xúc sắc đều xuất hiện mặt chẵn”
⇒ A = {(2; 2); (2; 4); (2; 6); (4; 2); (4; 4); (4; 6); (6; 2); (6; 4); (6; 6)}
⇒ n(A) = 9.
b) Gọi B: “Tích số chấm trên hai con xúc sắc là số lẻ”
Vì tích hai số là lẻ chỉ khi cả hai thừa số đều lẻ nên :
B = {(1; 1); (1; 3); (1; 5); (3; 1); (3; 3); (3; 5); (5; 1); (5; 3); (5; 5)}
⇒ n(B) = 9