Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) Xác suất của biến cố B là \(\dfrac{1}{6}\), vì có 6 mặt trên xúc xắc và chỉ có duy nhất một mặt là mặt 6 chấm.
b)
+ Trong trường hợp biến cố A xảy ra, xác suất của biến cố B không thay đổi. Vì hai biến cố này là độc lập, kết quả của biến cố A không ảnh hưởng đến biến cố B.
+ Trong trường hợp biến cố A không xảy ra, tức là An không gieo được mặt 6 chấm, xác suất của biến cố B là \(\dfrac{1}{6}\)
$HaNa$
Gọi A i là biến cố “ mặt 4 chấm xuất hiện lần thứ i” với i = 1; 2; 3; 4.
Khi đó: A i là biến cố “ Mặt 4 chấm không xuất hiện lần thứ i”
Và P ( A i ¯ ) = 1 − P ( A i ) = 1 − 1 6 = 5 6
Ta có: A ¯ là biến cố: “ không có mặt 4 chấm xuất hiện trong 4 lần gieo”
Và A ¯ = A 1 ¯ . A 2 ¯ . A 3 ¯ . A 4 ¯ . Vì các A i ¯ độc lập với nhau nên ta có:
P ( A ¯ ) = P ( A 1 ¯ ) . P ( A 2 ¯ ) . P ( A 3 ¯ ) . P ( A 4 ¯ ) = 5 6 4
Vậy P ( A ) = 1 − P ( A ¯ ) = 1 − 5 6 4 .
Chọn đáp án A.
a: \(\Omega=\left\{\left(1;1\right);\left(1;2\right);\left(1;3\right);...;\left(6;5\right);\left(6;6\right)\right\}\)
b: A={(1;2); (2;1)}
=>P(A)=2/36=1/18
B={(4;1); (5;2); (6;3); (1;4); (2;5); (3;6)}
=>P(B)=6/36=1/6
a) Không gian mẫu : Ω= { (i,j)∖ i.j = 1,2,3,4,5,6}
với i là số chấm xuất hiện trên mặt con súc sắc thứ nhất , j là số chấm xuất hiên trên mặt con súc sắc thứ 2. → /Ω/ = 36
b) từ gt ta có:
ΩA = { (1,1); (1,2); (1,3); (1,4); (1,5); (2,1); (2,2); (2,3); (2,4); (3,1); (3,2); (3,3); (4,1); (4,2); (5,1); (1,6); (3,4); (4,3); (5.2); (2,5); (6,1)}
→/ΩA/ = 21
Do đó: P(A) = /ΩA/ phần /Ω/ = 21/36 = 7/12
c) từ gt có:
ΩB = { (1,6) ; (2,6);... (6,6) ; (6,1); (6,2);..; (6,5)}
ΩC = {như trên nhưng trừ (6,6)}
do đó: P(B) = 11/36
P(C) = 10/36 = 5/18
a. Không gian mẫu là 6*6=36
b. A có các kết quả thuận lợi là (1,6) (6,1) (2,5) (5,2) (3,4) (4,3)
c. Biến cố đối của B sẽ là " Không có con xúc xắc nào xuất hiện mặt 6 chấm" Tức là con xúc xắc sẽ trở thành có 5 mặt => 5A2+5
=> P(B)= 1- P(Biến cố đối B)
d. (6,1) (6,2) (6,3) (6,4) (6,5) và ngược lại. Trừ (6,6)
=> có 10
=> P(C)= 10/36= 5/18
Ta có: \(A = \left\{ {\left( {1;1} \right);\left( {1;3} \right);\left( {1;5} \right);\left( {3;1} \right);\left( {3;3} \right);\left( {3;5} \right);\left( {5;1} \right);\left( {5;3} \right);\left( {5;5} \right)} \right\}\).
\(B\) là biến cố “Tổng số chấm xuất hiện là số lẻ”
\(\begin{array}{l} \Rightarrow B = \left\{ {\left( {1;2} \right);\left( {1;4} \right);\left( {1;6} \right);\left( {2;1} \right);\left( {2;3} \right);\left( {2;5} \right);\left( {3;2} \right);\left( {3;4} \right);\left( {3;6} \right);\left( {4;1} \right);\left( {4;3} \right);\left( {4;5} \right);} \right.\\\left. {\left( {5;2} \right);\left( {5;4} \right);\left( {5;6} \right);\left( {6;1} \right);\left( {6;3} \right);\left( {6;5} \right)} \right\}\end{array}\)
Vậy hai biến cố \(A\) và \(B\) xung khắc.
Chọn B.