Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Lời giải:
Xác suất để xu 1 ngửa: $\frac{1}{2}$
Xác suất để xu 2 ngửa: $\frac{1}{2}$
Xác suất để xu 3 ngửa: $\frac{1}{2}$
Xác suất để 3 mặt cùng ngửa: $\frac{1}{2}.\frac{1}{2}.\frac{1}{2}=\frac{1}{8}$
1.Gieo 2 đồng xu 1 lần,xác suất cả hai đều ngửa là 1/2*1/4 = 1/8
2.2 lần đều ngửa : 1/2*1/4*1/2*1/4 = 1/64
Đáp án A
Xác suất để gieo n lần đều mặt ngửa là 1 2 n . Từ đó
Ta cần gieo ít nhất 7 lần.
Đáp án A.
Xác suất một lần gieo được mặt một chấm là Xác suất để cả ba lần không gieo được mặt một chấm là Xác suất để có ít nhất một lần gieo được mặt một chấm trong ba lượt gieo là:
(Ω) = { SSS,SSN,NSS,SNS,NNN,NNS,SNN,NSN}
⇒ n(Ω) = 8
a) Gọi Biến cố A= 'cả 3 đồng xu đều sấp'
➩ A = {SSS} ➩ n(A) = 1
➩ P(A) = n(A)/n(Ω) = 1/8
b) Gọi Biến cố B= 'có ít nhất 1 đồng xu sấp'
➩ B = { SNN,NNS,NSN,SSN,NSS,SNS,SSS } ➩ n(A) = 7
➩ P(B) = n(B)/n(Ω) = 7/8
c) Gọi Biến cố C = 'có đúng 1 đồng xu sấp '
➩ C = { SNN,NNS,NSN } ➩ n(C) = 3
➩ P(C) = n(C)/n(Ω) = 3/8
Chọn A
Ghi nhớ:
-Phép thử “gieo hai đồng tiền phân biệt” thì hai kết quả SN, NS của phép thử là khác nhau.
-Phép thử “gieo n đồng xu phân biệt” thì không gian mẫu có 2 n phần tử, với n ∈ ℕ * .
b. Biến cố C: “ Có ít nhất hai đồng tiền xuất hiện mặt ngửa” tức là có thể có hai hoặc ba đồng tiền xuất hiện mặt ngửa. Vì vậy chọn phương án B
Đáp án C
Gọi A k là biến cố lần thứ k xuất hiện mặt sấp
ta có P ( A k ) = 1 2 và