\(\left(x^2-5\right)\left(x+3\right)=0\)

">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

NV
18 tháng 7 2021

\(\Leftrightarrow\left[{}\begin{matrix}x^2-5=0\\x+3=0\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}x^2=5\\x=-3\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}x=-\sqrt{5}\\x=\sqrt{5}\\x=-3\end{matrix}\right.\)

18 tháng 7 2021

\(=>\left[{}\begin{matrix}x^2-5=0\\x+3=0\end{matrix}\right.< =>\left[{}\begin{matrix}x=\pm\sqrt{5}\\x=-3\end{matrix}\right.\)

vậy.....

4 tháng 3 2019

a) \(\frac{2}{x+1}-\frac{1}{x-2}=\frac{3x-11}{\left(x+1\right).\left(x-2\right)}\) Đk : x \(\ne-1\) ; x \(\ne2\)

\(\Leftrightarrow\frac{2.\left(x-2\right)}{\left(x+1\right).\left(x-2\right)}-\frac{1.\left(x+1\right)}{\left(x+1\right).\left(x-2\right)}=3x-11\)

\(\Leftrightarrow2x-4-x-1=3x-11\)

\(\Leftrightarrow2x-3x-x=-11+4+1\)

\(\Leftrightarrow-2x=-6\)

\(\Leftrightarrow x=3\)

Vậy S = \(\left\{3\right\}\)

10 tháng 8 2020

a); b) Do tích = 0 

=> Từng thừa số = 0 và ta nhận xét: \(x^2+2;x^2+3>0\)

=> a) \(\orbr{\begin{cases}x=1\\x=-\frac{5}{2}\end{cases}}\)

và câu b) \(\orbr{\begin{cases}x=\frac{1}{2}\\x=5\end{cases}}\)

10 tháng 8 2020

a; *x-1=0 <=>x=1

    *2x+5=0 <=>x=-2,5

    *x2+2=0 <=> ko có x

b; tương tự a

11 tháng 8 2020

a) \(\left(x^2+2x+2\right)\left(x^2+2x+3\right)=0\)

<=> \(\orbr{\begin{cases}x^2+2x+2=0\\x^2+2x+3=0\end{cases}}\)

<=> \(\orbr{\begin{cases}\left(x+1\right)^2+1=0\left(vl\right)\\\left(x+1\right)^2+2=0\left(vl\right)\end{cases}}\)

=> pt vô nghiệm

b) \(\left(x+3\right)\left(x-3\right)\left(x^2-11\right)+3=2\)

<=> \(\left(x^2-9\right)\left(x^2-11\right)+1=0\)

<=> \(\left(x^2-9\right)^2-2\left(x^2-9\right)+1=0\)

<=> \(\left(x^2-9-1\right)^2=0\)

<=> \(x^2-10=0\)

<=> \(x=\pm\sqrt{10}\)

11 tháng 8 2020

c) \(\left(x+3\right)^4+\left(x+5\right)^4=2\)

<=> \(\left(x+4-1\right)^4+\left(x+4+1\right)^4=2\)

Đặt x + 4 = a

<=> \(\left(a-1\right)^4+\left(a+1\right)^4=2\)

<=> \(a^4-4a^3+6a^2-4a+1+a^4+4a^3+6a^2+4a+1=2\)

<=> \(a^4+12a^2=0\)

<=> \(a^2\left(a^2+12\right)=0\)

<=> a = 0 (vì a2 + 12 > 0)

Vậy S = {0}

24 tháng 3 2020

a, - Đặt \(x^2+x=a\) ta được phương trình :\(a^2+4a-12=0\)

=> \(a^2-2a+6a-12=0\)

=> \(a\left(a-2\right)+6\left(a-2\right)=0\)

=> \(\left(a+6\right)\left(a-2\right)=0\)

=> \(\left[{}\begin{matrix}a+6=0\\a-2=0\end{matrix}\right.\)

=> \(\left[{}\begin{matrix}a=2\\a=-6\end{matrix}\right.\)

- Thay lại \(x^2+x=a\) vào phương trình trên ta được :\(\left[{}\begin{matrix}x^2+x=2\\x^2+x=-6\end{matrix}\right.\)

=> \(\left[{}\begin{matrix}x^2+x-2=0\\x^2+x+6=0\end{matrix}\right.\)

=> \(\left[{}\begin{matrix}\left(x+\frac{1}{2}\right)^2-\frac{9}{4}=0\\\left(x+\frac{1}{2}\right)^2+\frac{23}{4}=0\end{matrix}\right.\)

=> \(\left[{}\begin{matrix}\left(x+\frac{1}{2}\right)^2=\frac{9}{4}\\\left(x+\frac{1}{2}\right)^2=-\frac{23}{4}\left(VL\right)\end{matrix}\right.\)

=> \(\left[{}\begin{matrix}x+\frac{1}{2}=\sqrt{\frac{9}{4}}\\x+\frac{1}{2}=-\sqrt{\frac{9}{4}}\end{matrix}\right.\)

=> \(\left[{}\begin{matrix}x=\sqrt{\frac{9}{4}}-\frac{1}{2}=1\\x=-\sqrt{\frac{9}{4}}-\frac{1}{2}=-2\end{matrix}\right.\)

Vậy phương trình trên có nghiệm là \(S=\left\{1,-2\right\}\)

b, Đặt \(x^2+2x+3=a\) -> làm tương tự câu a .

c, Ta có : \(\left(x-2\right)\left(x+2\right)\left(x^2-10\right)=72\)

=> \(\left(x^2-4\right)\left(x^2-10\right)=72\)

- Đặt \(x^2-4=a\)\(x^2-10=a-6\) ta được phương trình :

\(a\left(a-6\right)=72\)

=> \(a^2-6a-72=0\)

=> \(a^2+6a-12a-72=0\)

=> \(a\left(a+6\right)-12\left(a+6\right)=0\)

=> \(\left(a+6\right)\left(a-12\right)=0\)

=> \(\left[{}\begin{matrix}a+6=0\\a-12=0\end{matrix}\right.\)

=> \(\left[{}\begin{matrix}a=-6\\a=12\end{matrix}\right.\)

- Thay lại \(x^2-4=a\) vào phương trình trên ta được :\(\left[{}\begin{matrix}x^2-4=-6\\x^2-4=12\end{matrix}\right.\)

=> \(\left[{}\begin{matrix}x^2=-2\left(VL\right)\\x^2=16\end{matrix}\right.\)

=> \(\left[{}\begin{matrix}x=\sqrt{16}=4\\x=-\sqrt{16}=-4\end{matrix}\right.\)

Vậy phương trình trên có nghiệm là \(S=\left\{4,-4\right\}\)

d, Ta có : \(x\left(x+1\right)\left(x^2+x+1\right)=42\)

=> \(\left(x^2+x\right)\left(x^2+x+1\right)=42\)

- Đặt \(x^2+x=a\) ta được phương trình : \(a\left(a+1\right)=42\)

=> \(a^2+a-42=0\)

=> \(a^2+7a-6a-42=0\)

=> \(a\left(a+7\right)-6\left(a+7\right)=0\)

=> \(\left(a-6\right)\left(a+7\right)=0\)

=> \(\left[{}\begin{matrix}a=6\\a=-7\end{matrix}\right.\)

- Thay \(a=x^2+x\) vào phương trình ta được : \(\left[{}\begin{matrix}x^2+x=6\\x^2+x=-7\end{matrix}\right.\)

=> \(\left[{}\begin{matrix}x^2+x-6=0\\x^2+x+7=0\end{matrix}\right.\)

=> \(\left[{}\begin{matrix}\left(x+\frac{1}{2}\right)^2-\frac{25}{4}=0\\\left(x+\frac{1}{2}\right)^2+\frac{27}{4}=0\end{matrix}\right.\)

=> \(\left[{}\begin{matrix}\left(x+\frac{1}{2}\right)^2=\frac{25}{4}\\\left(x+\frac{1}{2}\right)^2=-\frac{27}{4}\left(VL\right)\end{matrix}\right.\)

=> \(\left[{}\begin{matrix}x+\frac{1}{2}=\sqrt{\frac{25}{4}}\\x+\frac{1}{2}=-\sqrt{\frac{25}{4}}\end{matrix}\right.\)

=> \(\left[{}\begin{matrix}x=\sqrt{\frac{25}{4}}-\frac{1}{2}=2\\x=-\sqrt{\frac{25}{4}}-\frac{1}{2}=-3\end{matrix}\right.\)

Vậy phương trình trên có tập nghiệm là \(S=\left\{2;-3\right\}\)

4 tháng 12 2019

\(4x\left(x-1\right)+5\left(1-x\right)=0\)

\(\Leftrightarrow4x\left(x-1\right)-5\left(x-1\right)=0\)

\(\Leftrightarrow\left(4x-5\right)\left(x-1\right)=0\)

\(\Leftrightarrow\orbr{\begin{cases}4x-5=0\\x-1=0\end{cases}}\)

\(\Leftrightarrow\orbr{\begin{cases}x=\frac{5}{4}\\x=1\end{cases}}\)

2 tháng 7 2018

Hỏi đáp Toán

Bài 1

4 tháng 1 2019

;;;

a: \(\Leftrightarrow\left(\dfrac{1}{3}x-1\right)^3=\left(\dfrac{1}{5}x-1\right)^3\)

=>1/3x-1=1/5x-1

=>2/15x=0

hay x=0

b: Đặt 2x+1=a; 3x-1=b

Theo đề, ta có \(\left(a+b\right)^3-a^3-b^3=0\)

=>3ab(a+b)=0

=>5x(2x+1)(3x-1)=0

hay \(x\in\left\{0;-\dfrac{1}{2};\dfrac{1}{3}\right\}\)

c: Đặt x-3=a; x+1=b

Theo đề, ta có: \(\left(a+b\right)^3=a^3+b^3\)

=>3ab(a+b)=0

=>(x-3)(x+1)(2x-2)=0

hay \(x\in\left\{3;-1;1\right\}\)

8 tháng 2 2018

a. \(9\left(x+2\right)-3\left(x+2\right)=0\)

\(\Leftrightarrow9x+18-3x-6=0\)

\(\Leftrightarrow6x+12=0\)

\(\Leftrightarrow x=-2\)

e. \(\left(2x-1\right)^2-45=0\)

\(\Leftrightarrow4x^2-2x+1-45=0\)

\(\Leftrightarrow4x^2-2x-44=0\)

Đến đó tự giải tiếp nha!

c. \(2\left(2x-5\right)-3x=0\)

\(\Leftrightarrow4x-10-3x=0\)

\(\Leftrightarrow x-10=0\)

\(\Leftrightarrow x=10\)

g. \(2x^2-6x=0\)

\(\Leftrightarrow2x\left(x-3\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}2x=0\\x-3=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=0\\x=3\end{matrix}\right.\)

20 tháng 2 2018

sao làm nhung cau de the