Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\left(x+2\right)\left(x+3\right)\left(x+4\right)\left(x+5\right)-24=0\\ \Leftrightarrow\left[\left(x+2\right)\left(x+5\right)\right]\cdot\left[\left(x+3\right)\left(x+4\right)\right]=24\\ \Leftrightarrow\left(x^2+7x+10\right)\left(x^2+7x+12\right)=24\)
đặt \(t=x^2+7x+11\) khi đó ta có
\(\left(t-1\right)\left(t+1\right)=24\\ \Leftrightarrow t^2-1-24=0\\ \Leftrightarrow\left(t-5\right)\left(t+5\right)=0\\ \Leftrightarrow\left[{}\begin{matrix}t=5\\t=-5\end{matrix}\right.\)
Trở về ẩn x ta có
Với t=5
\(x^2+7x+11=5\Leftrightarrow x^2+7x+6\Leftrightarrow\left[{}\begin{matrix}x=-1\\x=-6\end{matrix}\right.\)
Với t=-5
\(x^2+7x+11=-5\\\Leftrightarrow x^2+7x+16=0\\ \Leftrightarrow\left(x+3,5\right)^2+3,75=0\)
Voi \(\left(x+3,5\right)^2\ge0\Rightarrow\varnothing\)
Vậy ...................
\(\Leftrightarrow\left[{}\begin{matrix}x^2-5=0\\x+3=0\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}x^2=5\\x=-3\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}x=-\sqrt{5}\\x=\sqrt{5}\\x=-3\end{matrix}\right.\)
\(=>\left[{}\begin{matrix}x^2-5=0\\x+3=0\end{matrix}\right.< =>\left[{}\begin{matrix}x=\pm\sqrt{5}\\x=-3\end{matrix}\right.\)
vậy.....
a: (x-3)(x-2)<0
=>x-2>0 và x-3<0
=>2<x<3
b: \(\left(x+3\right)\left(x+4\right)\left(x^2+2\right)\ge0\)
=>(x+3)(x+4)>=0
=>x+3>=0 hoặc x+4<=0
=>x>=-3 hoặc x<=-4
c: \(\dfrac{x-1}{x-2}\ge0\)
=>x-2>0 hoặc x-1<=0
=>x>2 hoặc x<=1
d: \(\dfrac{x+3}{2-x}>=0\)
=>\(\dfrac{x+3}{x-2}< =0\)
=>x+3>=0 và x-2<0
=>-3<=x<2
\(\left(x^2+x+1\right)\left(x^2+x+2\right)=12\)
Đặt \(x^2+x+1=t\) khi đó ta có
\(t\left(t+1\right)=12\\ \Leftrightarrow t^2+t-12=0\\ \Leftrightarrow\left[{}\begin{matrix}t=3\\t=-4\end{matrix}\right.\)
Trở về ẩn x
Với t=3
\(x^2+x+1=3\\ \Leftrightarrow x^2+x-2=0\Leftrightarrow\left[{}\begin{matrix}x=1\\x=-2\end{matrix}\right.\)
Với t=-4
\(x^2+x+1=-4\Leftrightarrow x^2+x+1+4=0\)
Ma \(x^2+x+1>0\forall x\)
Suy ra không có giá trị nào của x tồn tại
Ta có : (x - 3)(x - 2) < 0
Nên sảy ra 2 trường hợp : D
Th1 : \(\hept{\begin{cases}x-3< 0\\x-2>0\end{cases}\Rightarrow\hept{\begin{cases}x< 3\\x>2\end{cases}\Rightarrow}2< x< 3}\)
Th2 : \(\hept{\begin{cases}x-3>0\\x-2< 0\end{cases}\Rightarrow\hept{\begin{cases}x>3\\x< 2\end{cases}\left(loại\right)}}\)
Vậy 2 < x < 3
\(x^4-6x^3+7x^2+6x-8=0\)
\(\Leftrightarrow x^4-4x^3-2x^3+8x^2-x^2+4x+2x-8=0\)
\(\Leftrightarrow x^3\left(x-4\right)-2x^2\left(x-4\right)-x\left(x-4\right)+2\left(x-4\right)=0\)
\(\Leftrightarrow\left(x-4\right)\left(x^3-2x^2-x+2\right)=0\)
\(\Leftrightarrow\left(x-4\right)\left[x^2\left(x-2\right)-\left(x-2\right)\right]=0\)
\(\Leftrightarrow\left(x-4\right)\left(x-1\right)\left(x+1\right)\left(x-2\right)=0\)
\(\Leftrightarrow x\in\left\{-1;1;2;4\right\}\)
Vậy S={-1;1;2;4}
bài 1:
2(x^2-9).4(x^2-1)
=(2x^2-18)(4x^2-4)
=8x^4-8x^2-72x^2+72
=8x^4-80x^2+72
\(Bai1:2\left(x-3\right)\left(x+3\right)+4\left(x-1\right)\left(x+1\right)\)
\(=2\left(x^2-9\right)+4\left(x^2-1\right)\)
\(=2x^2-18+4x^2-4\)
\(=6x^2-22\)
\(Bai2:-\left(6x-1\right)\left(3-2x\right)+\left(3x-2\right)\left(4x-3\right)=17\)
\(\Leftrightarrow-\left(18x-12x^2-3+2x\right)+12x^2-9x-8x+6=17\)
\(\Leftrightarrow-18x+12x^2+3-2x+12x^2-9x-8x+6=17\)
\(\Leftrightarrow24x^2-37x+9-17=0\)
\(\Leftrightarrow24x^2-37x-8=0\)
Đề sai??