Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Câu 3:
$\Delta=2015^2-4.2013.2=2011^2$
Do đó pt có 2 nghiệm:
$x_1=\frac{2015+2011}{2.2013}=1$
$x_2=\frac{2015-2011}{2.2013}=\frac{2}{2013}$
Đáp án B.
Câu 4:
Theo định lý Viet, tổng các nghiệm của pt là:
$S=\frac{-b}{a}=\frac{-3}{1}=-3$
Đáp án B.
\(F=x_1^2-3x_2-2013\)
Áp dụng Viét: \(\left\{{}\begin{matrix}x_1+x_2=-3\\x_1x_2=-7\end{matrix}\right.\)
Vì \(x_1\) là nghiệm của PT nên \(x_1^2+3x_1-7=0\Leftrightarrow x_1^2=7-3x_1\)
\(\Leftrightarrow F=7-3x_1-3x_2-2013\\ F=-2006-3\left(x_1+x_2\right)=-2006-3\left(-3\right)=-1997\)
Ta có: 2 x 4 + x 2 – 3 = x 4 + 6 x 2 + 3
⇔ 2 x 4 + x 2 – 3 – x 4 – 6 x 2 – 3 = 0
⇔ x 4 – 5 x 2 – 6 = 0
Đặt m = x 2 . Điều kiện m ≥ 0
Ta có: x 4 – 5 x 2 – 6 = 0 ⇔ m 2 – 5m – 6 = 0
∆ = - 5 2 – 4.1.(-6) = 25 + 24 = 49 > 0
∆ = 49 = 7
Ta có: x 2 = 6 ⇒ x = ± 6
Vậy phương trình đã cho có 2 nghiệm: x 1 = 6 , x 2 = - 6
Ta có: 5 x 4 – 7 x 2 – 2 = 3 x 4 – 10 x 2 – 3
⇔ 5 x 4 – 7 x 2 – 2 – 3 x 4 + 10 x 2 + 3 = 0
⇔ 2 x 4 + 3 x 2 + 1 = 0
Đặt m = x 2 . Điều kiện m ≥ 0
Ta có: 2 x 4 + 3 x 2 + 1 = 0 ⇔ 2 m 2 + 3m + 1 = 0
Phương trình 2 m 2 + 3m + 1 = 0 có hệ số a = 2, b = 3, c = 1 nên có dạng :
a – b + c = 0 suy ra m 1 = -1, m 2 = -1/2
Cả hai giá trị của m đều nhỏ hơn 0 nên không thỏa mãn điều kiện bài toán.
Vậy phương trình vô nghiệm.
Vì \(x_1\) là nghiệm PT nên \(x_1^2+3x_1-7=0\Leftrightarrow x_1^2=7-3x_1\)
\(F=x_1^2-3x_2-2013=7-3x_1-3x_2-2013\\ F=-3\left(x_1+x_2\right)-2006\)
Mà theo Viét ta có \(x_1+x_2=-3\)
\(\Rightarrow F=\left(-3\right)\left(-3\right)-2006=-1997\)
A = (x+ căn x^2+2013).(y+ căn y^2+2013) =2013
=> (x+ căn x^2+2013) .(x- căn x^2+2013).(y+ căn y^2+2013) phần (x- căn x^2+2013) =2013
=> -2013 . (y+ căn y^2+2013) phần (x+ căn x^2+2013) = 2013
=> -y - (y+ căn y^2+2013 ) = x - (x+ căn x^2+2013) (1)
-x - (x+ căn x^2+2013) = y - (y+ căn y^2+2013) (2)
tu (1) va (2) => x + y = 0
+) Ta có: P(x) = 0 có 3 nghiệm phân biệt
=> Gọi 3 nghiệm đó là m; n ; p.
=> P(x) = ( x - m ) ( x - p ) (x - n)
=> P(Q(x)) = ( x^2 + x + 2013 -m )( x^2 + x + 2013 -n )( x^2 + x + 2013 - p )
Vì P(Q(x)) =0 vô nghiệm nên: x^2 + x + 2013 - m = 0 ;x^2 + x + 2013 - m = 0; x^2 + x + 2013 - m = 0 đều vô nghiệm
=> \(\Delta_m=1^2-4\left(2013-m\right)< 0;\Delta_n=1^2-4\left(2013-n\right)< 0;\Delta_p=1^2-4\left(2013-p\right)< 0\)
=> \(2013-m>\frac{1}{4};2013-n>\frac{1}{4};2013-p>\frac{1}{4}\)
=> P(2013) = ( 2013 - m) (2013 -n ) (2013 - p) >\(\frac{1}{4}.\frac{1}{4}.\frac{1}{4}=\frac{1}{64}\)
Đặt \(y=\sqrt{x^2+2013}\to2013=y^2-x^2\left(y>0\right).\) Do đó phương trình viết lại ở dạng
\(x^4+y=y^2-x^2\to x^4+x^2+\frac{1}{4}=y^2-y+\frac{1}{4}\to\left(x^2+\frac{1}{2}\right)^2=\left(y-\frac{1}{2}\right)^2\)
Thành thử \(x^2+\frac{1}{2}=y-\frac{1}{2}\) hoặc \(x^2+\frac{1}{2}=-y+\frac{1}{2}\). Do \(y>0\) nên trường hợp \(x^2+\frac{1}{2}=-y+\frac{1}{2}\) không xảy ra. Vậy \(x^2+\frac{1}{2}=y-\frac{1}{2}\to x^2=y-1\to\left(x^2+1\right)^2=x^2+2013\to x^4+x^2=2012\)
Do vậy \(\left(2x^2+1\right)^2=4\times2012+1\Leftrightarrow2x^2+1=\sqrt{8049}\Leftrightarrow x=\pm\sqrt{\frac{\sqrt{8049}-1}{2}}\)