Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\frac{2x-1}{3x^2+7x+2}+\frac{3}{9x^2+15x+4}-\frac{2x+7}{3x^2-5x-12}=\frac{5}{x+2}\)
\(\Leftrightarrow\frac{2x-1}{\left(3x+1\right)\left(x+2\right)}+\frac{3}{\left(3x+1\right)\left(3x+4\right)}-\frac{2x+7}{\left(4x+3\right)\left(x-3\right)}=\frac{5}{\left(x+2\right)}\)
\(\Leftrightarrow\frac{1}{x+2}-\frac{1}{3x+1}+\frac{1}{3x+1}-\frac{1}{3x+4}+\frac{1}{3x+4}-\frac{1}{x-3}=\frac{5}{x+2}\)
\(\Leftrightarrow\frac{1}{x+2}-\frac{1}{x-3}=\frac{5}{x+2}\)
\(\Leftrightarrow\frac{x-3-x-2}{\left(x+2\right)\left(x-3\right)}=\frac{5\left(x-3\right)}{\left(x+2\right)\left(x-3\right)}\)
\(\Leftrightarrow5x-3=-5\)
\(\Leftrightarrow x=-\frac{2}{5}\)
Chúc bạn học tốt !!!
Bài 1:
Đặt \(t=2x^2+3x-1\) ta có:
\(t^2-5\left(t+4\right)+24=0\)
\(\Rightarrow t^2-5t-20+24=0\)
\(\Rightarrow t^2-5t+4=0\)
\(\Rightarrow\left(t-4\right)\left(t-1\right)=0\)\(\Rightarrow\left[\begin{matrix}t=4\\t=1\end{matrix}\right.\)
*)Xét \(2x^2+3x-1=4\)
\(\Rightarrow\left(x-1\right)\left(2x+5\right)=0\)\(\Rightarrow\left[\begin{matrix}x=1\\x=-\frac{5}{2}\end{matrix}\right.\)
*)Xét \(2x^2+3x-1=1\)
\(\Rightarrow\left(x+2\right)\left(2x-1\right)=0\)\(\Rightarrow\left[\begin{matrix}x=-2\\x=\frac{1}{2}\end{matrix}\right.\)
Bài 2:
\(\left(x^2-4\right)\left(x+3\right)=\left(x^2-4\right)\left(x-1\right)\)
\(\Rightarrow\left(x^2-4\right)\left(x+3\right)-\left(x^2-4\right)\left(x-1\right)=0\)
\(\Rightarrow\left(x^2-4\right)\left[x+3-\left(x-1\right)\right]=0\)
\(\Rightarrow4\left(x-2\right)\left(x+2\right)=0\)
\(\Rightarrow\left(x-2\right)\left(x+2\right)=0\)\(\Rightarrow\left[\begin{matrix}x=2\\x=-2\end{matrix}\right.\)
\(x^4-3x^3+4x^2-3x-1=0\)
\(\Leftrightarrow x^4+x^3+2x^3+2x^2+2x^2+2x+x+1=0\)
\(\Leftrightarrow x^3\left(x+1\right)+2x^2\left(x+1\right)+2x\left(x+1\right)+\left(x+1\right)=0\)
\(\Leftrightarrow\left(x^3+2x^2+2x+1\right)\left(x+1\right)=0\)
\(\Leftrightarrow\left(x^3+2x^2+2x+1\right)\left(x+1\right)=0\)
\(\Leftrightarrow(x^3+x^2+x^2+x+x+1)\left(x+1\right)=0\)
\(\Leftrightarrow[x^2\left(x+1\right)+x\left(x+1\right)+\left(x+1\right)]\left(x+1\right)=0\)
\(\Leftrightarrow\left(x+1\right)\left(x^2+x+1\right)\left(x+1\right)=0\)
\(\Leftrightarrow\left(x+1\right)^2\left(x^2+x+1\right)=0\)
\(\Leftrightarrow\orbr{\begin{cases}(x+1)^2=0\\x^2+x+1=0\end{cases}}\Rightarrow\hept{\begin{cases}x+1=0\\\varnothing\end{cases}}\Rightarrow x=-1\)
Bây giờ a giải đc hệ này chưa ạ? Nếu giải đc r cho e xin lời giải đc ko ạ
a/ \(=x^4+2x^3+2x^2+\left(x^3+2x^2+2x\right)-\left(5x^2+10x+10\right)\)
\(=x^2\left(x^2+2x+2\right)+x\left(x^2+2x+2\right)-5\left(x^2+2x+2\right)\)
\(=\left(x^2+x-5\right)\left(x^2+2x+2\right)\)
b/ \(=3x^4+x^3-x^2+\left(9x^3+3x^2-3x\right)-\left(18x^2+6x-6\right)\)
\(=x^2\left(3x^2+x-1\right)+3x\left(3x^2+x-1\right)-6\left(3x^2+x-1\right)\)
\(=\left(x^2+3x-6\right)\left(3x^2+x-1\right)\)
c/ Bạn xem lại đề, câu này ko phân tích được
Phương trình phải có vế phải bạn nhé!