Giao thoa sóng trên mặt nước với hai nguồn sóng tại A và B có phương trình lần lượt là...">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

4 tháng 12 2018

+ M là một cực tiểu giao thoa, giữa M và trung trực AB có hai dãy cực đại → M thuộc cực tiểu ứng với k = 2.

Ta có

MB - MA = (2+0,5) v f ⇒ v = ( M B - M A ) f 2 , 5 = 20 cm/s

Đáp án A

 

21 tháng 10 2015

A,B là 2 nguồn cùng pha nên đường trung trực của AB dao động cực đại.

Giữa M và đường trung trực của AB có 3 dãy dực đại khác => M nằm trên dãy cực đại k = 4

\(d_2-d_1=(k+\frac{\triangle\varphi}{2\pi})\lambda = (4+0)\lambda \Rightarrow \lambda = \frac{d_2-d_1}{4}=\frac{21-19}{4}=0.5cm \Rightarrow v = f.\lambda = 80.0,5=40cm/s.\)

 

 

2 tháng 5 2017

cho mình hỏi nếu có hai dãy cực đại thì k=1 à

11 tháng 9 2015

Bước sóng \(\lambda = v/f = 1/25 = 0.04m = 4cm.\)

Độ lệch pha giữa hai nguồn sóng là \(\triangle\varphi= \varphi_2-\varphi_1 = \frac{5\pi}{6}+\frac{\pi}{6} = \pi.\)

Biên độ sóng tại điểm M là \( A_M = |2a\cos\pi(\frac{10-50}{4}-\frac{\pi}{2\pi})| =0.\)

23 tháng 8 2016

Ta có \lambda = \frac{9}{f} = 2
Và \frac{- S_1S_2}{\lambda } < k < \frac{ S_1S_2}{\lambda } (k \epsilon N) => có 9 điểm

O
ongtho
Giáo viên
16 tháng 11 2015

Tại P dao động cực tiểu khi \(d_{2}-d_{1}=(2k+1+\frac{\triangle \phi}{\pi})\frac{\lambda}{2}.\)

Tại P dao động cực đại khi \(d_{2}-d_{1}=(k+\frac{\triangle \phi}{2\pi})\lambda.\)

Tại M là vân lồi bậc k và tại N là vân lồi bậc k + 3 =>\(MA-MB=(k+0.5)\lambda=12.25\\ NA-NB=(k+3+0.5)\lambda=33.25\\ \) 

\(\Rightarrow 3\lambda=33.25-12.25=21 \Rightarrow \lambda=7mm.\)

Số điểm cực đại giao thoa trên đoạn AB là \(-AB\leq (k+\frac{1}{2})\lambda\leq AB \Rightarrow \frac{-AB}{\lambda}-0.5 \leq k \leq \frac{AB}{\lambda}\)

=> có 14 điểm cực đại giao thoa kể cả A và B.

 

 

14 tháng 6 2017

cho mình hỏi ngu xí ạ

đề ns là xét về một phía của đường trug trực v khi ra đáp án mình ko cần nhân 2 ạ

O
ongtho
Giáo viên
11 tháng 11 2015

\(\lambda=\frac{v}{f}=\frac{12}{5}=2.4cm\)

Số điểm cực đại trong đoạn MN chính là số giá trị k thỏa mãn \(NO_{2}-NO_{1} \leq d_{2}-d_{1} \leq MO_{2}-MO_{1} \Rightarrow -12 \leq (k+ \frac{\triangle \phi}{2\pi})\lambda \leq 7\\ \Rightarrow -5.25 \leq k \leq 2.7 \)

=> k = -5,-4,-3,-2,-1,0,1,2. Có 8 vân cực đại trong đoạn MN.

Số điểm cực tiểu trong đoạn MN:

\(NO_{2}-NO_{1} \leq d_{2}-d_{1} \leq MO_{2}-MO_{1} \Rightarrow -12 \leq (2k+1+ \frac{\triangle \phi}{\pi})\frac{\lambda}{2} \leq 7\\ \Rightarrow -5.75\leq k \leq 2.16\)

=>k = -5,...,0,1,2. Có 8 vân cực tiểu trong đoạn MN.

 

 

11 tháng 9 2015

 \(\lambda = v/f = 80/20 = 4cm.\)

\(\triangle \varphi = \pi-0=\pi.\)

Nhận xét: \(BM-AM=(BI+IM)-(AI-IM)=2MI\)

\( A_M = |2a\cos\pi(\frac{d_2-d_1}{\lambda}-\frac{\triangle\varphi}{2\pi})| = |2a\cos\pi(\frac{BM-AM}{\lambda}-\frac{\triangle\varphi}{2\pi})|\\=|2a\cos\pi(\frac{2MI}{\lambda}-\frac{\triangle\varphi}{2\pi})| = |2a\cos\pi(\frac{6}{4}-\frac{\pi}{2\pi})| = |-2a|=2a=10 mm.\)

23 tháng 4 2017

A

17 tháng 9 2015

Tại những điểm cách O một đoạn x thì biên độ giảm \(2.5\sqrt{x}\)lần

=> biên độ tại điểm M cách O một đoạn 25cm là \(\frac{2}{2,5.\sqrt{25}} = 0.16cm. \)

M trễ pha hơn O:

\(u_M=0.16\cos(4\pi t - 2\pi\frac{OM}{\lambda})= 0.16\cos(40\pi t - \frac{5\pi}{3})cm.\)

16 tháng 11 2015

Số điểm cực đại trên đoạn AG là số giá trị k thỏa mãn \(-AG \leq (k+\frac{\triangle \phi}{2\pi})\lambda \leq AG \Rightarrow -\frac{AB}{4}.3=10.875cm \leq (k+0.5)\lambda \leq 10.875\\ \Rightarrow -5.94 \leq k \leq 4.94 \Rightarrow k = -5,-4,\ldots,0,1,\ldots,4\)

có 10 điểm dao động cực đại trên đoạn AG