Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Tam giác có trọng tâm đồng thời là trực tâm, điểm cách đều ba đỉnh, điểm (nằm trong tam giác) cách đều ba cạnh là tam giác đều.
Những tam giác có trọng tâm đồng thời là trực tâm, điểm cách đều ba đỉnh, điểm (nằm trong tam giác) cách đều ba cạnh là tam giác đều
Tam giác có trọng tâm đồng thời là trực tâm, điểm cách đều ba đỉnh, điểm (nằm trong tam giác) cách đều ba cạnh là tam giác đều.
a) Tính chất trong SGK . Xác định thì đầy cách.
Cách 1 : Chứng minh là giao điểm 2 đường trung tuyến
Cách 2 : Gỉa sử AM là trung tuyến ,G thuộc AM Chứng minh \(GM=\frac{1}{3}AM\)thì là trọng tâm Hoặc tùy
Cách khác là cách nâng cao
Câu 7 :
Tam giác cân, tam giác đều
Câu 8:
Tam giác đều
b) Trung tuyến xuất phát từ đỉnh và đi qua trung điểm của cạnh đối diện.
3 trung tuyến cùng cắt nhau tại 1 điểm là trọng tâm
Vì vậy ko thể nào có trọng tâm nằm ngoài tam giác ( vìTrung tuyến xuất phát từ đỉnh và đi qua trung điểm của cạnh đối diện nó nằm ngoài thì gọi gì là trung tuyến nữa )
suy ra Nam sai
a)
Ta có:
G là trọng tâm của tam giác ABC (giao điểm của ba đường trung tuyến);
H là trực tâm của tam giác ABC (giao điểm của ba đường cao);
I là giao điểm của ba đường phân giác của tam giác ABC;
O là giao điểm của ba đường trung trực của tam giác ABC (Đường trung trực đi qua trung điểm của cạnh và vuông góc với cạnh tại trung điểm đó).
Mà tam giác ABC đều nên trong tam giác ABC đường trung tuyến đồng thời là đường cao và là đường phân giác.
Vậy bốn điểm G, H, I, O trùng nhau hay nếu tam giác ABC đều thì bốn điểm G, H, I, O trùng nhau.
b)
Giả sử trong tam giác ABC có hai điểm trùng nhau là H (trực tâm của tam giác) và I (giao của ba đường phân giác).
Hay AD, BE, CF vừa là đường cao, vừa là đường phân giác của tam giác ABC.
Xét tam giác ADB và tam giác ADC có:
\(\widehat {BAD} = \widehat {CAD}\) ( vì AD là tia phân giác của góc BAC)
AD chung;
\(\widehat {ADB} = \widehat {ADC}(=90^0)\) (vì \(AD \bot BC\));
Vậy \(\Delta ADB = \Delta ADC\)(g.c.g). Suy ra: AB = AC( 2 cạnh tương ứng). (1)
Tương tự ta có: \(\Delta AEB = \Delta CEB\)(c.g.c). Suy ra: AB = BC ( 2 cạnh tương ứng). (2)
Từ (1) và (2) suy ra: AB = BC = AC.
Vậy tam giác ABC đều hay nếu tam giác ABC có hai điểm trong bốn điểm G, H, I, O trùng nhau thì tam giác ABC là tam giác đều.
Chọn C