![](https://rs.olm.vn/images/avt/0.png?1311)
- Với m=1 hệ trở thành : \(\hept{\begin{cases}-x-3y=-5\left(1\right)\\x+y=3\left(2\right)\end{cases}}\)cộng 1 và 2 : \(\Rightarrow-2y=-2\Rightarrow y=1\)thay y vào 2 có : \(x=3-y=3-1=2\)vậy nghiệm phương trình là : \(\hept{\begin{cases}x=2\\y=1\end{cases}}\)
- \(\hept{\begin{cases}\left(m-2\right)x-3y=-5\left(3\right)\\x+my=3\left(4\right)\end{cases}}\) từ 4 có :\(x=3-my\)thế vào phương trình 3 đc :\(\left(m-2\right)\left(3-my\right)-3y=-5\)\(\Leftrightarrow3m-m^2y-6+2my-3y=-5\)\(\Leftrightarrow y\left(m^2-2m+3\right)=3m-1\Leftrightarrow y=\frac{3m-1}{m^2-2m+3}\)để phương trình có nghiệm thì \(m^2-2m+3\ne0\)thật vây \(m^2-2m+3=\left(m^2-2m+1\right)+2=\left(m-1\right)^2+2\ge2\forall m\)nên phương trinh có 1 nghiệm với mọi m => hệ phương trình có một nghiệm duy nhất với mợi m . Khi đó phương trình của hệ là: \(\hept{\begin{cases}y=\frac{3m-1}{m^2-2m+3}\\x=3-my\end{cases}}\Leftrightarrow\hept{\begin{cases}y=\frac{3m-1}{m^2-2m+3}\\x=3-\frac{\left(3m-1\right)m}{m^2-2m+3}\end{cases}}\)\(\Leftrightarrow\hept{\begin{cases}y=\frac{3m-1}{m^2-2m+3}\\x=\frac{3m^2-6m+9-3m^2+m}{m^2-2m+3}\end{cases}}\Leftrightarrow\hept{\begin{cases}x=\frac{9-5m}{m^2-2m+3}\\y=\frac{3m-1}{m^2-2m+3}\end{cases}}\)