K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

29 tháng 4 2018

      \(y\left(x-2\right)=x^2+3\)

\(\Leftrightarrow\)\(y\left(x-2\right)-x^2=3\)

\(\Leftrightarrow\)\(y\left(x-2\right)-x^2+4=7\)

\(\Leftrightarrow\)\(y\left(x-2\right)-\left(x-2\right)\left(x+2\right)=7\)

\(\Leftrightarrow\)\(\left(x-2\right)\left(y-x-2\right)=7\)\(=1.7=\left(-1\right).\left(-7\right)\)

Do  \(x,y\)nguyên   nên   \(x-2\)và    \(y-x-2\)nguyên

Ta lập bảng sau:

\(x-2\) \(1\)\(7\)\(-1\)\(-7\)
\(x\)\(3\)\(9\)    \(1\)\(-5\)
\(y-x-2\)\(7\)\(1\)\(-7\)\(-1\)
\(y\)\(12\)\(12\)\(-4\)\(-4\)

Vậy....

p/s: phần lập bảng bn ktra lại nha, (sợ tính sai)

 

28 tháng 4 2018

Xét x=3  thì pt vô nghiệm 

xét x khác 3, ta có \(y=\frac{x^2+3}{x-2}=\frac{x^2-4+7}{x-2}=x+2+\frac{7}{x-2}\)

Mà x,y là số nguyên => \(\frac{7}{x-2}\) là số nguyên => x-2 thuộc ước của 7, đến đây tự làm nhá

12 tháng 8 2020

khai triển và rút gọn 2 vế ta được x(x+1)=y4+2y3+3y2+2y

<=> x(x+1)=y2(y+1)2+2y(y+1)

<=> x2+x+1=(y2+y+1)2 (1)

nếu x>0 thì từ x2<x2+x+1<(x+1)2 => (1) không có nghiệm nguyên x>0

nếu x=0 hoặc x=-1 thì từ (1) => y2+y+1 = \(\pm\)\(\Leftrightarrow\hept{\begin{cases}y=0\\y=-1\end{cases}}\)

ta có nghiệm (x;y)=(0;0);(0;-1);(-1;0);(-1;-1)

nếu x<-1 thì từ (x+1)2<x2+x+1<x2

=> (1) không có nghiệm nguyên x<-1

tóm lại phương trình đã cho có 4 nghiệm nguyên (x;y)=(0;0);(0;-1);(-1;0);(-1;-1)

NV
28 tháng 7 2021

\(4y^2=4x^4+4x^3+4x^2+4x+4\)

Ta có:

\(4x^4+4x^3+4x^2+4x+4=\left(2x^2+x\right)^2+\left(3x^2+4x+4\right)>\left(2x^2+x\right)^2\)

\(4x^4+4x^3+4x^2+4x+4=\left(2x^2+x+2\right)^2-5x^2\le\left(2x^2+x+2\right)^2\)

\(\Rightarrow\left(2x^2+x\right)^2< \left(2y\right)^2\le\left(2x^2+x+2\right)^2\)

\(\Rightarrow\left[{}\begin{matrix}\left(2y\right)^2=\left(2x^2+x+1\right)^2\\\left(2y\right)^2=\left(2x^2+x+2\right)^2\end{matrix}\right.\)

\(\Rightarrow\left[{}\begin{matrix}4x^4+4x^3+4x^2+4x+4=\left(2x^2+x+1\right)^2\\4x^4+4x^3+4x^2+4x+4=\left(2x^2+x+2\right)^2\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}x^2-2x-3=0\\5x^2=0\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}x=-1\\x=0\\x=3\end{matrix}\right.\)

- Với \(x=-1\Rightarrow y^2=1\Rightarrow y=\pm1\)

- Với \(x=0\Rightarrow y^2=1\Rightarrow y=\pm1\)

- Với \(x=3\Rightarrow y^2=121\Rightarrow y=\pm11\)