Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(x^2-2-2\sqrt{4x-7}=0\)
\(\Leftrightarrow\left(4x-7-2\sqrt{4x-7}+1\right)+\left(x^2-4x+4\right)=0\)
\(\Leftrightarrow\left(\sqrt{4x-7}-1\right)^2+\left(x-2\right)^2=0\)
\(\Rightarrow\left[{}\begin{matrix}\sqrt{4x-7}-1=0\\x-2=0\end{matrix}\right.\)
Tự làm tiếp nhé.
. . .
\(4x^2-5x+1+2\sqrt{x-1}=0\)
\(\Leftrightarrow\left(x-1\right)\left(4x-1\right)+2\sqrt{x-1}=0\)
\(\Leftrightarrow\sqrt{x-1}\left[\left(4x-1\right)\sqrt{x-1}+2\right]=0\)
\(\Rightarrow x=1\)
. . .
\(\sqrt{x^2-4x+4}+\sqrt{x^2-6x+9}=1\)
\(\Leftrightarrow\sqrt{\left(x-2\right)^2}+\sqrt{\left(x-3\right)^2}=1\)
\(\Leftrightarrow\left|x-2\right|+\left|x-3\right|=1\)
\(VT=\left|x-2\right|+\left|3-x\right|\ge\left|x-2+3-x\right|=1=VP\)
Dấu "=" xảy ra khi \(\left(x-2\right)\left(3-x\right)\ge0\)
Đến đây lập bảng xét dấu
. . .
\(x^2-x+2=2\sqrt{x^2-x+1}\)
\(\Leftrightarrow\left(\sqrt{x^2-x+1}-1\right)^2=0\)
Tự làm tiếp nhé.
\(\sqrt{3x+1}-\sqrt{6-x}+3x^2-14x-8=0\)
\(\Leftrightarrow\left(\sqrt{3x+1}-4\right)+\left(1-\sqrt{6-x}\right)+\left(3x^2-14-5\right)=0\)
\(\Leftrightarrow\dfrac{3x+1-16}{\sqrt{3x+1}+4}+\dfrac{1-6+x}{1+\sqrt{6-x}}+\left(x-5\right)\left(3x+1\right)=0\)
\(\Leftrightarrow\dfrac{3\left(x-5\right)}{\sqrt{3x+1}+4}+\dfrac{x-5}{1+\sqrt{6-x}}+\left(x-5\right)\left(3x+1\right)=0\)
\(\Leftrightarrow\left(\dfrac{3}{\sqrt{3x+1}+4}+\dfrac{1}{1+\sqrt{6-x}}+3x+1\right)\left(x-5\right)=0\)
\(\Rightarrow x=5\)
. . .
\(\sqrt{2x^2-4x+5}-x+4=0\)
\(\Leftrightarrow\sqrt{2x^2-4x+5}=x-4\)
\(\Leftrightarrow\left\{{}\begin{matrix}x-4\ge0\\2x^2-4x+5=x^2-8x+16\end{matrix}\right.\)
Tự làm tiếp nhé.
. . .
\(\sqrt{2x+3}+\sqrt{x-1}=\sqrt{x+6}\)
\(\Leftrightarrow\sqrt{2x+3}=\sqrt{x+6}-\sqrt{x-1}\)
\(\Leftrightarrow2x+3=x+6-2\sqrt{\left(x+6\right)\left(x-1\right)}+x-1\)
\(\Leftrightarrow2\sqrt{x^2+5x-6}=2\)
\(\Leftrightarrow x^2+5x-6=1\)
Tự làm tiếp nhé.
. . .
\(x+y+\dfrac{1}{2}=\sqrt{x}+\sqrt{y}\)
\(\Leftrightarrow\left(x-\sqrt{x}+\dfrac{1}{4}\right)+\left(y-\sqrt{y}+\dfrac{1}{4}\right)=0\)
\(\Leftrightarrow\left(\sqrt{x}-\dfrac{1}{2}\right)^2+\left(\sqrt{y}-\dfrac{1}{2}\right)^2=0\)
Tự làm tiếp nhé.
ĐK: \(x\ge0\) hoặc \(x\le-1\)
Đặt: \(\sqrt{x^2+1}=a;\) \(\sqrt{x^2+x}=b\) \(\left(a,b\ge0\right)\)
Khi đó pt đcho trở thành:
\(a-b=b^2-a^2\)
<=> \(\left(a-b\right)\left(a+b+1\right)=0\)
đến đây tự lm
p/s: bài này có nhiều cách, bn tham khảo
\(\sqrt{2-x}=3-\sqrt{3x+1}\left(ĐK:-\frac{1}{3}\le x\le2\right)\)
\(\Leftrightarrow\sqrt{2-x}+\sqrt{3x+1}=3\)
\(\Leftrightarrow2-x+3x+1+2\sqrt{\left(2-x\right)\left(3x+1\right)}=9\)
\(\Leftrightarrow2\sqrt{\left(2-x\right)\left(3x+1\right)}=6-2x\)
\(\Leftrightarrow\sqrt{\left(2-x\right)\left(3x+1\right)}=3-x\left(ĐK:x\le3\right)\)
\(\Leftrightarrow\left(2-x\right)\left(3x+1\right)=\left(3-x\right)^2\)
\(\Leftrightarrow6x+2-3x^2-x=9-6x+x^2\)
\(\Leftrightarrow4x^2-11x+7=0\)
\(\Leftrightarrow\left(x-1\right)\left(4x-7\right)=0\)
\(\Leftrightarrow\left[\begin{array}{nghiempt}x-1=0\\4x-7=0\end{array}\right.\)\(\Leftrightarrow\left[\begin{array}{nghiempt}x=1\left(tm\right)\\x=\frac{7}{4}\left(tm\right)\end{array}\right.\)
Vậy pt đã cho có tập nghiệm là \(S=\left\{1;\frac{7}{4}\right\}\)
Nâng cao và phát triển toán 9 Vũ Hữu Bình tập 2 bài 318a trang 51 :)
ĐKXĐ : \(x\ge0\)
\(\sqrt{x^2+1}-x=0\Leftrightarrow\sqrt{x^2+1}=x\Leftrightarrow x^2+1=x^2\Leftrightarrow1=0\) (vô lý)
Vậy pt vô nghiệm.
\(\Leftrightarrow\sqrt{x^2+1}=x\)
\(\Leftrightarrow x^2+1=x^2\)
\(\Leftrightarrow1=0\) ( vô lí )
=> Phương trình vô nghiệm
A=(\(3\sqrt{3}-2\sqrt{3}+6\)).\(\sqrt{3}-4\sqrt{3}\)
=\(\sqrt{3}\left(3-2+2\sqrt{3}\right)\).\(\sqrt{3}-4\sqrt{3}\)
=3(\(3-2+2\sqrt{3}\))-4\(\sqrt{3}\)
=3+2\(\sqrt{3}\)
ĐKXĐ: \(\left[{}\begin{matrix}x< -1\\x>1\end{matrix}\right.\)
- Với \(x< -1\Rightarrow VT< 0< 2\sqrt{2}\Rightarrow\) ptvn
- Với \(x>1\), bình phương 2 vế:
\(x^2+\dfrac{x^2}{x^2-1}+\dfrac{2x^2}{\sqrt{x^2-1}}=8\)
\(\Leftrightarrow\dfrac{x^4}{x^2-1}+2\sqrt{\dfrac{x^4}{x^2-1}}-8=0\)
Đặt \(\sqrt{\dfrac{x^4}{x^2-1}}=t>0\)
\(\Rightarrow t^2+2t-8=0\Rightarrow\left[{}\begin{matrix}t=2\\t=-4\left(loại\right)\end{matrix}\right.\)
\(\Rightarrow\dfrac{x^4}{x^2-1}=4\Rightarrow x^4-4x^2+4=0\)
\(\Rightarrow x^2=2\Rightarrow x=\sqrt{2}\)