K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

20 tháng 1 2020

ĐK: \(x^2+2x+3>0\)(BĐT đúng)     (Tự Cm được)

Với đk trên, đặt:

\(\hept{\begin{cases}\sqrt{x^2+2x+3}=a\\2x+1=b\end{cases}}\)với a > 0

\(\Leftrightarrow\hept{\begin{cases}a^2=x^2+2x+3\\2b=4x+2\end{cases}\Rightarrow a^2+2b=x^2+6x+5}\)

Pt trở thành

\(a^2+2b-4=ab\)

\(\Leftrightarrow4a^2+8b-16=4ab\)

\(\Leftrightarrow4a^2-4ab=-8b+16\)

\(\Leftrightarrow4a^2-4ab+b^2=b^2-8b+16\)

\(\Leftrightarrow\left(2a-b\right)^2=\left(b-4\right)^2\)

Đến đây tự làm nha

11 tháng 12 2017

nhầm,\(\sqrt{4x^2+9x+2}\)

19 tháng 6 2021

ta có:

pt trên \(< =>x^2+6x+1=\left(2x+1\right)\sqrt{x^2+2x+3}\)

\(< =>\left[\left(x^2+6x\right)+1\right]^2=\left(2x+1\right)^2.\left(x^2+2x+3\right)\)

\(< =>x^4+12x^3+36x^2+2.\left(x^2+6x\right)+1=\left(4x^2+4x+1\right)\left(x^2+2x+3\right)\)

\(< =>x^4+12x^3+38x^2+12x+1=\)

\(4x^4+8x^3+12x^2+4x^3+8x^2+12x+x^2+2x+3\)

\(=4x^4+12x^3+21x^2+14x+3\)

\(< =>-3x^4+17x^2-2x-2=0\)

\(< =>-\left(x^2+2x-1\right)\left(3x^2-6x+2\right)=0\)

đến đây dễ rùi bạn tự giải nhé 

 

20 tháng 5 2022

\(\text{Đ}K:x^2+2x+3\ge0\\ x^2+6x+1=\left(2x+1\right)\cdot\sqrt{x^2+2x+3}\\ \Leftrightarrow x^2+2x+3+4x+2=\left(2x+1\right)\cdot\sqrt{x^2+2x+3+4}\)

\(\text{ Đặt }\)\(m=\sqrt{x^2+2x+3};n=2x+1\) \(\text{ phương trình trở thành :}\)

\(m^2+2n=mn+4\\ \Leftrightarrow m^2-4-mn+2n=0\\ \Leftrightarrow\left(m-2\right)\left(m+2\right)-n\left(m-2\right)=0\\ \Leftrightarrow\left(m-2\right)\left(m-n-2\right)=0\\ \Leftrightarrow\left[{}\begin{matrix}m=2\\m-n=-2\end{matrix}\right.\)

`\text{ Với}` \(m=2\\ \Leftrightarrow\sqrt{x^2+2x+3}=2\Leftrightarrow x^2+2x-1=0\\ \Leftrightarrow\left[{}\begin{matrix}x=\sqrt{2}-1\left(N\right)\\x=-\sqrt{2}-1\left(N\right)\end{matrix}\right.\)

`\text{Với}`\(m-n=-2\Leftrightarrow\sqrt{x^2+2x+3}-\left(2x+1\right)=-2\\ \Leftrightarrow\sqrt{x^2+2x+3}=-2+2x+1=2x-1\\ \Leftrightarrow x^2+2x+3=4x^2-4x+1\\ \Leftrightarrow3x^2-6x-2=0\\ \Leftrightarrow\left[{}\begin{matrix}x=\dfrac{3+\sqrt{15}}{3}\left(N\right)\\x=\dfrac{3-\sqrt{15}}{3}\left(L\right)\end{matrix}\right.\)

20 tháng 5 2022

weo hay thế:33

AH
Akai Haruma
Giáo viên
31 tháng 8 2023

Lời giải:

a.

PT $\Leftrightarrow |2x+1|=|x-1|$

$\Leftrightarrow 2x+1=x-1$ hoặc $2x+1=-(x-1)$

$\Leftrightarrow x+2=0$ hoặc $3x=0$

$\Leftrightarrow x=-2$ hoặc $x=0$ (tm)

b.

PT $\Leftrightarrow 9x^2-6x+1=x^2-4x+4$

$\Leftrightarrow 8x^2-2x-3=0$

$\Leftrightarrow (4x-3)(2x+1)=0$

$\Leftrightarrow 4x-3=0$ hoặc $2x+1=0$

$\Leftrightarrow x=\frac{3}{4}$ hoặc $x=\frac{-1}{2}$ (tm)

 

a: =>|2x+1|=|x-1|

=>2x+1=x-1 hoặc 2x+1=-x+1

=>x=-2 hoặc x=0

b: =>|3x-1|=|x-2|

=>3x-1=x-2 hoặc 3x-1=-x+2

=>2x=-1 hoặc 4x=3

=>x=-1/2 hoặc x=3/4

NV
13 tháng 7 2020

b/

Đặt \(\sqrt[3]{2x-1}=a\Rightarrow a^3+1=2x\)

Ta được hệ:

\(\left\{{}\begin{matrix}x^3+1=2a\\a^3+1=2x\end{matrix}\right.\)

\(\Rightarrow x^3-a^3=2a-2x\)

\(\Leftrightarrow\left(x-a\right)\left(x^2+ax+a^2\right)+2\left(x-a\right)=0\)

\(\Leftrightarrow\left(x-a\right)\left(x^2+ax+a^2+2\right)=0\)

\(\Leftrightarrow\left(x-a\right)\left[\left(x+\frac{a}{2}\right)^2+\frac{3a^2}{4}+2\right]=0\)

\(\Leftrightarrow x-a=0\)

\(\Rightarrow x=\sqrt[3]{2x-1}\Leftrightarrow x^3-2x+1=0\)

\(\Leftrightarrow\left(x-1\right)\left(x^2-x-1\right)=0\)

\(\Leftrightarrow...\)

NV
13 tháng 7 2020

a/ \(\Leftrightarrow2\left(x^2+1\right)-\left(4x-1\right)\sqrt{x^2+1}+2x-1=0\)

Đặt \(\sqrt{x^2+1}=a\ge1\)

\(\Rightarrow2a^2-\left(4x-1\right)a+2x-1=0\)

\(\Delta=\left(4x-1\right)^2-8\left(2x-1\right)=\left(4x-3\right)^2\)

Phương trình có 2 nghiệm: \(\left[{}\begin{matrix}t=\frac{4x-1-4x+3}{4}=\frac{1}{2}< 1\left(l\right)\\t=\frac{4x-1+4x-3}{4}=2x-1\end{matrix}\right.\)

\(\Rightarrow\sqrt{x^2+1}=2x-1\) \(\left(x\ge\frac{1}{2}\right)\)

\(\Leftrightarrow x^2+1=4x^2-4x+1\)

\(\Leftrightarrow3x^2-4x=0\Rightarrow\left[{}\begin{matrix}x=0\left(l\right)\\x=\frac{4}{3}\end{matrix}\right.\)

30 tháng 6 2017

a)Đk:\(x\ge\frac{1}{2}\)

\(pt\Leftrightarrow4x^2-12x+4+4\sqrt{2x-1}=0\)

\(\Leftrightarrow\left(2x-1\right)^2-4\left(2x-1\right)-1+4\sqrt{2x-1}=0\)

Đặt \(t=\sqrt{2x-1}>0\Rightarrow\hept{\begin{cases}t^2=2x-1\\t^4=\left(2x-1\right)^2\end{cases}}\)

\(t^4-4t^2+4t-1=0\)

\(\Leftrightarrow\left(t-1\right)^2\left(t^2+2t-1\right)=0\)

\(\Rightarrow\orbr{\begin{cases}t-1=0\\t^2+2t-1=0\end{cases}}\)\(\Rightarrow\orbr{\begin{cases}t=1\\t=\sqrt{2}-1\end{cases}\left(t>0\right)}\)

\(\Rightarrow\orbr{\begin{cases}x=1\\x=2-\sqrt{2}\end{cases}}\) là nghiệm thỏa pt