Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
ĐK: \(x^2+2x+3>0\)(BĐT đúng) (Tự Cm được)
Với đk trên, đặt:
\(\hept{\begin{cases}\sqrt{x^2+2x+3}=a\\2x+1=b\end{cases}}\)với a > 0
\(\Leftrightarrow\hept{\begin{cases}a^2=x^2+2x+3\\2b=4x+2\end{cases}\Rightarrow a^2+2b=x^2+6x+5}\)
Pt trở thành
\(a^2+2b-4=ab\)
\(\Leftrightarrow4a^2+8b-16=4ab\)
\(\Leftrightarrow4a^2-4ab=-8b+16\)
\(\Leftrightarrow4a^2-4ab+b^2=b^2-8b+16\)
\(\Leftrightarrow\left(2a-b\right)^2=\left(b-4\right)^2\)
Đến đây tự làm nha
b/
Đặt \(\sqrt[3]{2x-1}=a\Rightarrow a^3+1=2x\)
Ta được hệ:
\(\left\{{}\begin{matrix}x^3+1=2a\\a^3+1=2x\end{matrix}\right.\)
\(\Rightarrow x^3-a^3=2a-2x\)
\(\Leftrightarrow\left(x-a\right)\left(x^2+ax+a^2\right)+2\left(x-a\right)=0\)
\(\Leftrightarrow\left(x-a\right)\left(x^2+ax+a^2+2\right)=0\)
\(\Leftrightarrow\left(x-a\right)\left[\left(x+\frac{a}{2}\right)^2+\frac{3a^2}{4}+2\right]=0\)
\(\Leftrightarrow x-a=0\)
\(\Rightarrow x=\sqrt[3]{2x-1}\Leftrightarrow x^3-2x+1=0\)
\(\Leftrightarrow\left(x-1\right)\left(x^2-x-1\right)=0\)
\(\Leftrightarrow...\)
a/ \(\Leftrightarrow2\left(x^2+1\right)-\left(4x-1\right)\sqrt{x^2+1}+2x-1=0\)
Đặt \(\sqrt{x^2+1}=a\ge1\)
\(\Rightarrow2a^2-\left(4x-1\right)a+2x-1=0\)
\(\Delta=\left(4x-1\right)^2-8\left(2x-1\right)=\left(4x-3\right)^2\)
Phương trình có 2 nghiệm: \(\left[{}\begin{matrix}t=\frac{4x-1-4x+3}{4}=\frac{1}{2}< 1\left(l\right)\\t=\frac{4x-1+4x-3}{4}=2x-1\end{matrix}\right.\)
\(\Rightarrow\sqrt{x^2+1}=2x-1\) \(\left(x\ge\frac{1}{2}\right)\)
\(\Leftrightarrow x^2+1=4x^2-4x+1\)
\(\Leftrightarrow3x^2-4x=0\Rightarrow\left[{}\begin{matrix}x=0\left(l\right)\\x=\frac{4}{3}\end{matrix}\right.\)
\(ĐK:x\ge\dfrac{1}{2}\\ PT\Leftrightarrow2x-2\sqrt{2x^2+5x-3}=1+x\sqrt{2x-1}-2x\sqrt{x+3}\\ \Leftrightarrow\left(2x-2\right)-\left(2\sqrt{2x^2+5x-3}-4\right)=\left(x\sqrt{2x-1}-x\right)-\left(2x\sqrt{x+3}-4x\right)-3x+3\\ \Leftrightarrow2\left(x-1\right)-\dfrac{2\left(2x^2+5x-7\right)}{\sqrt{2x^2+5x-3}+4}=\dfrac{x\left(2x-2\right)}{\sqrt{2x-1}+1}-\dfrac{2x\left(x-1\right)}{\sqrt{x+3}+4x}-3\left(x-1\right)\\ \Leftrightarrow2\left(x-1\right)-\dfrac{2\left(x-1\right)\left(2x+7\right)}{\sqrt{2x^2+5x-3}+4}-\dfrac{2x\left(x-1\right)}{\sqrt{2x-1}+1}+\dfrac{2x\left(x-1\right)}{\sqrt{x+3}+4x}+3\left(x-1\right)=0\\ \Leftrightarrow\left(x-1\right)\left[2-\dfrac{2\left(2x+7\right)}{\sqrt{2x^2+5x-3}+4}-\dfrac{2x}{\sqrt{2x-1}+2}+\dfrac{2x}{\sqrt{x+3}+4x}+3\right]=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x=1\left(tm\right)\\2-\dfrac{2\left(2x+7\right)}{\sqrt{2x^2+5x-3}+4}-\dfrac{2x}{\sqrt{2x-1}+2}+\dfrac{2x}{\sqrt{x+3}+4x}+3=0\left(1\right)\end{matrix}\right.\)
Với \(x\ge\dfrac{1}{2}\Leftrightarrow-\dfrac{2\left(2x+7\right)}{\sqrt{2x^2+5x-3}+4}>-\dfrac{2\cdot8}{4}=-4\)
\(-\dfrac{2x}{\sqrt{2x-1}+2}>-\dfrac{1}{2};\dfrac{2x}{\sqrt{x+3}+4x}>0\)
Do đó \(\left(1\right)>2-4-\dfrac{1}{2}+3=\dfrac{1}{2}>0\) nên (1) vô nghiệm
Vậy PT có nghiệm duy nhất \(x=1\)
1.
\(\Leftrightarrow\left(2x+1\right)\sqrt{2x^2+4x+5}-\left(2x+1\right)\left(x+3\right)+x^2-2x-4=0\)
\(\Leftrightarrow\left(2x+1\right)\left(\sqrt{2x^2+4x+5}-\left(x+3\right)\right)+x^2-2x-4=0\)
\(\Leftrightarrow\dfrac{\left(2x+1\right)\left(x^2-2x-4\right)}{\sqrt{2x^2+4x+5}+x+3}+x^2-2x-4=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x^2-2x-4=0\\\dfrac{2x+1}{\sqrt{2x^2+4x+5}+x+3}+1=0\left(1\right)\end{matrix}\right.\)
\(\left(1\right)\Leftrightarrow2x+1+\sqrt{2x^2+4x+5}+x+3=0\)
\(\Leftrightarrow\sqrt{2x^2+4x+5}=-3x-4\) \(\left(x\le-\dfrac{4}{3}\right)\)
\(\Leftrightarrow2x^2+4x+5=9x^2+24x+16\)
\(\Leftrightarrow7x^2+20x+11=0\)
2.
ĐKXĐ: ...
\(\Leftrightarrow2x\sqrt{2x+7}+7\sqrt{2x+7}=x^2+2x+7+7x\)
\(\Leftrightarrow\left(x^2-2x\sqrt{2x+7}+2x+7\right)+7\left(x-\sqrt{2x+7}\right)=0\)
\(\Leftrightarrow\left(x-\sqrt{2x+7}\right)^2+7\left(x-\sqrt{2x+7}\right)=0\)
\(\Leftrightarrow\left(x-\sqrt{2x+7}\right)\left(x+7-\sqrt{2x+7}\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x=\sqrt{2x+7}\\x+7=\sqrt{2x+7}\end{matrix}\right.\)
\(\Leftrightarrow...\)
\(\Leftrightarrow\left|2x-1\right|=5\Leftrightarrow\left[{}\begin{matrix}2x-1=5\\1-2x=5\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=3\\x=-2\end{matrix}\right.\)