Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(3^{x-1}.7+3^{x-1}.2=9\\ 3^{x-1}.\left(7+2\right)=9\\ 3^{x-1}.9=9\\ 3^{x-1}=\dfrac{9}{9}=1\\ Mà:3^0=1\\ Nên:x-1=0\\ Vậy:x=0+1=1\\ ---\\ P=2+2^2+2^3+...+2^{65}+2^{66}=\left(2+2^2+2^3\right)+\left(2^4+2^5+2^6\right)+...+\left(2^{64}+2^{65}+2^{66}\right)\\ =2\left(1+2+2^2\right)+2^4\left(1+2+2^2\right)+...+2^{64}\left(1+2+2^2\right)\\ =2.7+2^4.7+...+2^{64}.7\\ =\left(2+2^4+....+2^{64}\right).7⋮7\left(đpcm\right)\)
+)
\(3^{x-1}.7+3^{x-1}.2=9\)
\(3^{x-1}.\left(7+2\right)=9\)
\(3^{x-1}.9=9\)
\(3^{x-1}=9:9\)
\(3^{x-1}=1\)
⇔\(3^{x-1}=3^0\)
⇒\(x-1=0\)
\(x=0+1\)
\(x=1\)
Vậy \(x=1\)
+)
\(2+2^2+2^3+...+2^{65}+2^{66}\)
Vì \(2+2^2+2^3=14\) mà \(14\)⋮\(7\)
⇒Ta nhóm 3 số với nhau
Ta có:
\(\left(2+2^2+2^3\right)+\left(2^4+2^5+2^6\right)+...+\left(2^{64}+2^{65}+2^{66}\right)\)
\(\left(2+2^2+2^3\right)+2^3.\left(2+2^2+2^3\right)+...+2^{63}.\left(2+2^2+2^3\right)\)
\(14.1+14.2^3+...+14.2^{63}\)
\(14.\left(1+2^3+...+2^{63}\right)\)
Do \(14\)⋮\(7\) nên \(P=14.\left(2+2^3+...+2^{63}\right)\)⋮\(7\)
Xin tick
\(A=2+2^2+2^3+2^4+...+2^{99}+2^{100}\)
\(=\left(2+2^2\right)+2^2\left(2+2^2\right)+...+2^{98}\left(2+2^2\right)\)
\(=6\left(1+2^2+...+2^{98}\right)⋮6\)
Có vì mỗi số hạng của tổng đều chia hết cho 2 do là lũy thừa của 2
tổng trên chia hết cho 2 vì mỗi số hạng ở tổng trên đều chia hết cho 2
Ta biết rằng 1 số & tổng các chữ số của nó có cùng số dư trong phép chia cho 3 , do đó hiệu của chúng chia hết cho 3
Như vậy: 2a-k chia hết cho 3, và a-k chia hết cho 3
=> ( 2a-k )-(a-k) chia hết cho 3
=> a chia hết cho 3
**** mình nha bạn !!!!!!
Công thức đặc biệt: a chia b dư 0 hoặc 1 thì an cũng chia b dư 0 hoặc 1.
a, Ta thấy 10 chia cho 9 dư 1 => 102011 chia cho 9 dư 1
Mà 8 chia cho 9 dư 8
Từ 2 điều trên => 102011 + 8 chia 9 dư 1 + 8 hay chia hết cho 9
Vậy...
b, Vì 13a5b chia hết cho 5 => b thuộc {0; 5}
+ Nếu b = 0 thì ta có:
13a50 chia hết cho 3
=> 1 + 3 + a + 5 + 0 chia hết cho 3
=> 9 + a chia hết cho 3
=> a thuộc {0; 3; 6; 9}
Vậy...
+ Nếu b = 5 thì ta có:
13a55 chia hết cho 3
=> 1 + 3 + a + 5 + 5 chia hết cho 3
=> 14 + a chia hết cho 3
=> a thuộc {1; 4; 7}
Vậy...
a) Vì 5.6.7.8.9 chia hết cho 2 và 2001 không chia hết cho 2
=> 5.6.7.8.9 - 2001 không chia hết cho 2
Vì 5.6.7.8.9 chia hết cho 3 và 2001 chia hết cho 3
=> 5.6.7.8.9 - 2001 chia hết cho 3
Vì 5.6.7.8.9 chia hết cho 5 và 2001 không chia hết cho 5
=> 5.6.7.8.9 - 2001 không chia hết cho 5
Vì 5.6.7.8.9 chia hết cho 9 và 2001 không chia hết cho 9
=> 5.6.7.8.9 - 2001 không chia hết cho 9
A = 2+22 + 23 +... + 230
= (2 + 22 + 23) + (24 + 25 + 26) + ... + (228 + 229 + 230)
= 2.(1+2+22) + 24.(1+2+22) + ... + 228.(1+2+22)
= 2.7 + 24.7 +... + 228.7
= 7.(2+24+...+ 228) chia hết cho 7
Vậy A chia hết cho 7
Cộng A theo cách:
\(2+2^2+2^3=2\cdot\left(1+2+4\right)\) chia hết cho 7
\(2^4+2^5+2^6=2^4\cdot\left(1+2+4\right)\)chia hết cho 7
...
\(2^{28}+2^{29}+2^{30}=2^{28}\cdot\left(1+2+4\right)\)chia hết cho 7
Vậy A chia hết cho 7.