\(x+4-\sqrt{14x-1}=\frac{\sqrt{10x-9}-1}{x}\)

">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

NV
7 tháng 6 2020

Một vài mẹo sử dụng casio FX-570VN.pdf - Google Drive

Bạn kéo xuống mục số 4, khoảng trang 36

Linh Chi

NV
7 tháng 6 2020

ĐKXĐ: \(x\ge\frac{9}{10}\)

\(\Leftrightarrow x^2+4x+1-x\sqrt{14x-1}-\sqrt{10x-9}=0\)

\(\Leftrightarrow x\left(x+3-\sqrt{14x-1}\right)+x+1-\sqrt{10x-9}=0\)

\(\Leftrightarrow\frac{x\left[\left(x+3\right)^2-\left(14x-1\right)\right]}{x+3+\sqrt{14x-1}}+\frac{\left(x+1\right)^2-\left(10x-9\right)}{x+1+\sqrt{10x-9}}=0\)

\(\Leftrightarrow\frac{x\left(x^2-8x+10\right)}{x+3+\sqrt{14x-1}}+\frac{x^2-8x+10}{x+1+\sqrt{10x-9}}=0\)

\(\Leftrightarrow\left(x^2-8x+10\right)\left(\frac{x}{x+3+\sqrt{14x-1}}+\frac{1}{x+1+\sqrt{10x-9}}\right)=0\)

\(\Leftrightarrow x^2-8x+10=0\) (casio)

NV
7 tháng 6 2020

Bạn tham khảo:

Câu hỏi của Nguyễn Thùy Chi - Toán lớp 10 | Học trực tuyến

NV
24 tháng 2 2020

a/ - Với \(x\le-3\Rightarrow\left\{{}\begin{matrix}VP< 0\\VT\ge0\end{matrix}\right.\) BPT vô nghiệm

- Với \(x\ge5\) hai vế đều ko âm, bình phương:

\(x^2-8x+16\ge x^2-2x-15\)

\(\Leftrightarrow6x\le31\Rightarrow x\le\frac{31}{6}\)

Vậy nghiệm của BPT là \(5\le x\le\frac{31}{6}\)

b/ - Với \(x\le-14\Rightarrow\left\{{}\begin{matrix}VT\ge0\\VP< 0\end{matrix}\right.\) BPT luôn thỏa mãn

- Với \(x\ge0\) , bình phương 2 vế:

\(x^2+14x>x^2+12x+36\)

\(\Leftrightarrow2x>36\Rightarrow x>18\)

Vậy nghiệm của BPT là \(\left\{{}\begin{matrix}x>18\\x\le-14\end{matrix}\right.\)

NV
24 tháng 2 2020

c/ \(\left(x-3\right)\left[x+3-\sqrt{x^2-4}\right]\le0\)

- Với \(x=3\) thỏa mãn

- Với \(x>3\Rightarrow x+3\le\sqrt{x^2-4}\)

\(\Leftrightarrow x^2+6x+9\le x^2-4\Rightarrow x\le-\frac{13}{6}\) (vô nghiệm)

- Với \(x< 3\Rightarrow x+3\ge\sqrt{x^2-4}\)

\(\Leftrightarrow\left\{{}\begin{matrix}x\ge-3\\x^2+6x+9\ge x^2-4\end{matrix}\right.\) \(\Rightarrow-3\le x\le-\frac{13}{6}\)

Vậy nghiệm của BPT là \(\left[{}\begin{matrix}x=3\\-3\le x\le-\frac{13}{6}\end{matrix}\right.\)

d/ Đặt \(\sqrt{5x^2+10x+1}=t\ge0\Rightarrow x^2+2x=\frac{t^2-1}{5}\)

\(t\ge7-\frac{t^2-1}{5}\Leftrightarrow t^2+5t-36\ge0\) \(\Rightarrow t\ge4\)

\(\Rightarrow\sqrt{5x^2+10x+1}\ge4\)

\(\Leftrightarrow5x^2+10x-15\ge0\Rightarrow\left[{}\begin{matrix}x\ge1\\x\le-3\end{matrix}\right.\)

NV
19 tháng 2 2020

ĐKXĐ: ...

\(\Leftrightarrow\left(x-1\right)\left(x+3-\sqrt{14x-15}\right)-\sqrt{10x-19}+1=0\)

\(\Leftrightarrow x^2+2x-2-\left(x-1\right)\sqrt{14x-15}-\sqrt{10x-19}=0\)

\(\Leftrightarrow x-\sqrt{10x-19}+\left(x-1\right)\left(x+2\right)-\left(x-1\right)\sqrt{14x-15}=0\)

\(\Leftrightarrow\frac{x^2-10x+19}{x+\sqrt{10x-19}}+\left(x-1\right)\left(\frac{x^2-10x+19}{x+2+\sqrt{14x+15}}\right)=0\)

\(\Leftrightarrow\left(x^2-10x+19\right)\left(\frac{1}{x+\sqrt{10x-19}}+\frac{x-1}{x+2+\sqrt{14x+15}}\right)=0\)

\(\Leftrightarrow x^2-10x+19=0\)

NV
7 tháng 11 2019

a/ ĐKXĐ: \(x\ge1\)

Khi \(x\ge1\) ta thấy \(\left\{{}\begin{matrix}VT>0\\VP=1-x\le0\end{matrix}\right.\) nên pt vô nghiệm

b/ \(x\ge1\)

\(\sqrt{\sqrt{x-1}\left(x-2\sqrt{x-1}\right)}+\sqrt{\sqrt{x-1}\left(x+3-4\sqrt{x-1}\right)}=\sqrt{x-1}\)

\(\Leftrightarrow\sqrt{\sqrt{x-1}\left(\sqrt{x-1}-1\right)^2}+\sqrt{\sqrt{x-1}\left(\sqrt{x-1}-2\right)^2}=\sqrt{x-1}\)

Đặt \(\sqrt{x-1}=a\ge0\) ta được:

\(\sqrt{a\left(a-1\right)^2}+\sqrt{a\left(a-2\right)^2}=a\)

\(\Leftrightarrow\left[{}\begin{matrix}a=0\Rightarrow x=1\\\sqrt{\left(a-1\right)^2}+\sqrt{\left(a-2\right)^2}=\sqrt{a}\left(1\right)\end{matrix}\right.\)

\(\Leftrightarrow\left|a-1\right|+\left|a-2\right|=\sqrt{a}\)

- Với \(a\ge2\) ta được: \(2a-3=\sqrt{a}\Leftrightarrow2a-\sqrt{a}-3=0\Rightarrow\left[{}\begin{matrix}\sqrt{a}=-1\left(l\right)\\\sqrt{a}=\frac{3}{2}\end{matrix}\right.\)

\(\Rightarrow a=\frac{9}{4}\Rightarrow\sqrt{x-1}=\frac{9}{4}\Rightarrow...\)

- Với \(0\le a\le1\) ta được:

\(1-a+2-a=\sqrt{a}\Leftrightarrow2a+\sqrt{a}-3=0\Rightarrow\left[{}\begin{matrix}a=1\\a=-\frac{3}{2}\left(l\right)\end{matrix}\right.\)

\(\Rightarrow\sqrt{x-1}=1\Rightarrow...\)

- Với \(1< a< 2\Rightarrow a-1+2-a=\sqrt{a}\Leftrightarrow a=1\left(l\right)\)

NV
7 tháng 11 2019

c/ ĐKXĐ: \(x\ge\frac{49}{14}\)

\(\Leftrightarrow\sqrt{14x-49+14\sqrt{14x-49}+49}+\sqrt{14x-49-14\sqrt{14x-49}+49}=14\)

\(\Leftrightarrow\sqrt{\left(\sqrt{14x-49}+7\right)^2}+\sqrt{\left(\sqrt{14x-49}-7\right)^2}=14\)

\(\Leftrightarrow\left|\sqrt{14x-49}+7\right|+\left|7-\sqrt{14x-49}\right|=14\)

\(VT\ge\left|\sqrt{14x-49}+7+7-\sqrt{14x-49}\right|=14\)

Nên dấu "=" xảy ra khi và chỉ khi:

\(7-\sqrt{14x-49}\ge0\)

\(\Leftrightarrow14x-49\le49\Leftrightarrow x\le7\)

Vậy nghiệm của pt là \(\frac{49}{14}\le x\le7\)

4 tháng 12 2019

a) ĐKXĐ: x\(\ge\)-3

PT\(\Leftrightarrow\sqrt{\left(x+7\right)\left(x+3\right)}=3\sqrt{x+3}+2\sqrt{x+7}-6\)

Đặt \(\left(\sqrt{x+3},\sqrt{x+7}\right)=\left(a,b\right)\)                 \(\left(a,b\ge0\right)\)

PT\(\Leftrightarrow ab=3a+2b-6\Leftrightarrow a\left(b-3\right)-2\left(b-3\right)=0\)

\(\Leftrightarrow\left(a-2\right)\left(b-3\right)=0\Leftrightarrow\orbr{\begin{cases}a=2\\b=3\end{cases}}\)(TM ĐK)

TH 1: a=2\(\Leftrightarrow\sqrt{x+3}=2\Leftrightarrow x+3=4\Leftrightarrow x=1\)(tm)

TH 2: b=3\(\Leftrightarrow\sqrt{x+7}=3\Leftrightarrow x+7=9\Leftrightarrow x=2\)(tm)

Vậy tập nghiệm phương trình S={1; 2}