Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a/\(\Leftrightarrow m\left(x-1\right)-\left(x-1\right)=-1\Leftrightarrow\left(m-1\right)\left(x-1\right)=-1\Rightarrow m-1\ne0\Leftrightarrow x\ne1\)
d/\(\Leftrightarrow m^2x-m^2-4-4mx+4m=0\Leftrightarrow m^2\left(x-1\right)-4m\left(x-1\right)=4\Leftrightarrow\left(x-1\right)m\left(m-4\right)=4\Rightarrow\left[{}\begin{matrix}m\ne0\\m\ne4\end{matrix}\right.\)
a) 7(m-11)x-2x+14=5m
<=> 7xm -77x-2x+14=5m
<=> 7xm-79x=5m-14
<=> (7m-79)x=5m-14
* Biện luận pt:
+) Nếu 7m-79=0 <=> m=\(\frac{79}{7}\)<=> 0x=\(\frac{297}{7}\) ( vô lý)
+) Nếu 7m-79\(\ne0\)<=> x=\(\frac{5m-14}{7m-79}\)
Vậy :
Nếu m=\(\frac{79}{7}\) thì pt vô nghiệm.
Nếu m\(\ne\) \(\frac{79}{7}\) thì S = \(\left\{\frac{5m-14}{7m-79}\right\}\)
b) 2xm + 4(2m+1)= m2+ 4 (x-1)
<=> 2xm + 8m + 4= m2+4x-4
<=> 2xm+8m+4-m2-4x+4=0
<=> (2m-4)x -m2+8m+8=0
<=> (2m-4)x=m2-8m-8
*Biện luận:
+) Nếu 2m-4=0 <=> m=2 <=> 0x=-20 (vô lý ) => pt vô nghiệm.
+) Nếu 2m-4 \(\ne0\) <=> x=\(\frac{m^2-8m-8}{2m-4}\)
Vậy :
Nếu m=2 => pt vô nghiệm
Nếu m\(\ne2=>S=\left\{\frac{m^2-8m-8}{2m-4}\right\}\)
1, Ta có : \(\dfrac{x+2}{x-m}=\dfrac{x+1}{x-1}\Leftrightarrow\left(x+2\right)\left(x-1\right)=\left(x+1\right)\left(x-m\right)\)
\(\Leftrightarrow x^2-x+2x-2=x^2-xm+x-m\)
\(\Leftrightarrow x^2-x^2+x-x-2+xm+m=0\)
\(\Leftrightarrow x\left(m+1\right)-2=0\)
Nếu \(m+1\ne0\Rightarrow\)PT có nghiệm duy nhất là : x = \(\dfrac{2}{m+1}\)
Vậy nếu m # -1 thì Pt có nghiệm duy nhất
3 ,
\(\dfrac{x+m}{x+1}+\dfrac{x-2}{x}=2\)
\(\Leftrightarrow\dfrac{x^2+mx}{x\left(x+1\right)}+\dfrac{\left(x-2\right)\left(x+1\right)}{x\left(x+1\right)}=2\)
\(\Leftrightarrow\dfrac{x^2+mx+x^2+x-2x-2}{x\left(x+1\right)}=2\)
Mik chỉ làm đến đây được thôi
P/S : Đăng từng bài 1 thôi :))
Câu 1: \(\dfrac{x+2}{x-m}=\dfrac{x+1}{x-1}\)
ĐKXĐ: \(x\ne m;x\ne1\)
\(\text{Ta có : }\dfrac{x+2}{x-m}=\dfrac{x+1}{x-1}\\ \Rightarrow\dfrac{\left(x+2\right)\left(x-1\right)}{\left(x-m\right)\left(x-1\right)}=\dfrac{\left(x+1\right)\left(x-m\right)}{\left(x-1\right)\left(\left(x-m\right)\right)}\\ \Rightarrow x^2+2x-x-2=x^2-mx+x-m\\ \Leftrightarrow x^2+x-2-x^2+mx-x+m=0\\ \Leftrightarrow m\left(x+1\right)=2\)
+) Với \(m\ne0\Leftrightarrow x+1=\dfrac{2}{m}\)
\(\Leftrightarrow x=\dfrac{2-m}{m}\)
\(\text{Khi đó : }\left\{{}\begin{matrix}\dfrac{2-m}{m}\ne1\\\dfrac{2-m}{m}\ne m\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}\dfrac{2-m}{m}-1\ne0\\\dfrac{2-m}{m}-m\ne0\end{matrix}\right.\\ \Leftrightarrow\left\{{}\begin{matrix}\dfrac{2-m-m}{m}\ne0\\\dfrac{2-m-m^2}{m}\ne0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}2-2m\ne0\\2-2m+m-m^2\ne0\end{matrix}\right.\\ \Leftrightarrow\left\{{}\begin{matrix}2\left(1-m\right)\ne0\\2\left(1-m\right)+m\left(1-m\right)\ne0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}1-m\ne0\\\left(2+m\right)\left(1-m\right)\ne0\end{matrix}\right.\\ \Leftrightarrow\left\{{}\begin{matrix}1-m\ne0\\2+m\ne0\\1-m\ne0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}m\ne1\\m\ne-2\end{matrix}\right.\)
Với \(m=0\Leftrightarrow0x=2\left(\text{Vô nghiệm}\right)\)
\(\Leftrightarrow S=\varnothing\)
Vậy để phương trình có 1 nghiệm duy nhất thì \(m\ne0;m\ne1;m\ne-2\)
d)
\(x\ne a,x\ne b\)
đặt \(\frac{x-a}{x-b}=t\Leftrightarrow t+\frac{1}{t}=2\Leftrightarrow\frac{t^2-2t+1}{t}=0\Rightarrow t=1\)
\(\frac{x-a}{x-b}=1\Leftrightarrow\frac{\left(x-a\right)-\left(x-b\right)}{x-b}=\frac{b-a}{x-b}=0\)
Vậy: \(a\ne b\) Pt vô nghiệm
a=b phương trinhg nghiệm với mọi x khác a, b
a) ( m - 2)x ≥ ( 2m - 1)x - 3
⇔ mx - 2x ≥ 2mx - x - 3
⇔ mx - 2mx + x - 2x ≥ - 3
⇔ - mx - x ≥ - 3
⇔ x( m + 1) ≤ 3 ( 1)
*) Với : m > - 1 , ta có :
( 1) ⇔ x ≤ \(\dfrac{3}{m+1}\)
*) Với : m < - 1 , ta có :
( 1) ⇔ x ≥ \(\dfrac{3}{m+1}\)
*) Với : m = -1 , ta có :
( 1) ⇔ 0x ≤ 3 ( luôn đúng )
KL....
b) \(\dfrac{m\left(x-2\right)}{6}+\dfrac{x-m}{3}>\dfrac{x+1}{2}\)
⇔ m( x - 2) + 2( x - m) > 3( x + 1)
⇔ mx - 2m + 2x - 2m > 3x + 3
⇔ mx - x > 4m + 3
⇔ x( m - 1) > 4m + 3 ( 2)
*) Với : m > 1 , ta có :
( 2) ⇔ x > \(\dfrac{4m+1}{m-1}\)
*) Với : m < 1 , ta có :
( 2) ⇔ x < \(\dfrac{4m+1}{m-1}\)
*) Với : m = 1 , ta có :
( 2) ⇔ 0x > 7 ( vô lý )
KL...
a) \(\frac{\left(x+m\right)}{x-5}+\frac{\left(x+5\right)}{x-m}=2\)
<=> \(\frac{\left(x+m\right)\left(x-m\right)}{\left(x-5\right)\left(x-m\right)}+\frac{\left(x+5\right)\left(x-5\right)}{\left(x-5\right)\left(x-m\right)}=2\)
<=>\(\frac{\left(x+m\right)\left(x-m\right)+\left(x+5\right)\left(x-5\right)}{\left(x-5\right)\left(x-m\right)}=2\)
<=>\(\frac{x^2-m^2+x^2-5^2}{\left(x-m\right)\left(x-5\right)}=2\)
<=>2(x-m)(x-5)=2x2-m2-25
Thay m=2, ta có:
2(x-2)(x-5)=2x2-22-25
2x2-14x+20=2x2-29
20+29=2x2-2x2+14x
49=14x
=>x=3,5
Các câu sau cũng tương tự, dài quá không hi