Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\left(2x+4\right)\left(x-3\right)-\left(x+2\right)\left(x-4\right)=x\left(x+5\right)\)
\(2\left(x+2\right)\left(x-3\right)-\left(x+2\right)\left(x-4\right)=x\left(x+5\right)\)
\(\left(x+2\right)\left(2x-6-x+4\right)=x\left(x+5\right)\)
\(\left(x+2\right)\left(x-2\right)-x^2-5x=0\)
\(x^2-2x+2x-4-x^2-5x=0\)
\(-5x-4=0\)
\(-5x=4\)
\(\Rightarrow\)\(x=\frac{-4}{5}\)
\(\left(x-2\right)^2=\left(2x-4\right)\left(x+5\right)\)
\(\left(x-2\right)^2-2\left(x-2\right)\left(x+5\right)=0\)
\(\left(x-2\right)\left(x-2-2x-10\right)=0\)
\(\left(x-2\right)\left(-x-12\right)=0\)
\(\Leftrightarrow\)\(\orbr{\begin{cases}x-2=0\\-x-12=0\end{cases}\Leftrightarrow\orbr{\begin{cases}x=2\\x=-12\end{cases}}}\)
Bạn tự kết luận 2 câu nhé
| 4x - 3m | = 2x + m
=> 4x - 3m \(\in\){ 2x + m; -2x - m }
+) 4x - 3m = 2x + m +) 4x - 3m = -2x - m
4x - 2x = m + 3m 4x + 2x = -m + 3m
2x = 4m 6x = 2m
Mới học lớp 7 nên mình chưa biết " giải phương trình " là gì, mình chỉ biết đến đây thôi :)
Nói chung đề thế nào cũng làm được nhưng nghe có vẻ nó ngang thôi
\(m^2x+3m-2=m+x\left(1\right)\)
\(\Leftrightarrow\left(m^2-1\right)x+3m-2=0\)
nếu m=+-1 \(\Leftrightarrow0.x+-3-2=0\Rightarrow vonghiem\)
nếu m khác +-1 phương trình luôn có nghiệm duy nhất
\(x=\frac{2-3m}{m^2-1}\)
a) \(x_0>0\Rightarrow\frac{2-3m}{m^2-1}>0\Rightarrow\orbr{\begin{cases}m< -1\\\frac{2}{3}< m< 1\end{cases}}\)
b) pt vô nghiệm khi m=+-1
có nghiệm duy nhất x=....khi m khác +-1
a) Nếu \(m^4-4=0\Leftrightarrow m^4=4\Leftrightarrow\orbr{\begin{cases}m=\sqrt{2}\\m=-\sqrt{2}\end{cases}}\)
TH1: \(m=\sqrt{2}\) khi đó PT tương đương:
\(\left[\left(\sqrt{2}\right)^4-4\right]x=3\sqrt{2}-6\)
\(\Leftrightarrow0x=3\sqrt{2}-6\)
=> PT vô nghiệm
TH2: \(m=-\sqrt{2}\) khi đó PT tương đương:
\(\left[\left(-\sqrt{2}\right)^4-4\right]x=-3\sqrt{2}-6\)
\(\Leftrightarrow0x=-3\sqrt{2}-6\)
=> PT vô nghiệm
Nếu \(m^4-4\ne0\Rightarrow\orbr{\begin{cases}m\ne\sqrt{2}\\m\ne-\sqrt{2}\end{cases}}\)
Khi đó PT có nghiệm duy nhất: \(x=\frac{3m-6}{m^4-4}\)
KL: Nếu \(m=\pm\sqrt{2}\) thì PT vô nghiệm
Nếu \(m\ne\pm\sqrt{2}\) thì PT có nghiệm duy nhất \(x=\frac{3m-6}{m^4-4}\)
b) Ta có: \(\left(2m+1\right)x-2m=3x-2\)
\(\Leftrightarrow2mx+x-2m-3x+2=0\)
\(\Leftrightarrow2mx-2x=2m-2\)
\(\Leftrightarrow2x\left(m-1\right)=2\left(m-1\right)\)
\(\Leftrightarrow\left(m-1\right)x=m-1\)
Nếu \(m-1=0\Leftrightarrow m=1\) Khi đó PT trở thành:
\(\left(1-1\right)x=1-1\)
\(\Leftrightarrow0x=0\)
=> PT có vô số nghiệm \(x\inℝ\)
Nếu \(m-1\ne0\Rightarrow m\ne1\)
Khi đó PT có nghiệm duy nhất \(x=\frac{m-1}{m-1}=1\)
KL: Nếu m = 1 thì PT có vô số nghiệm \(x\inℝ\)
Nếu \(m\ne1\) thì PT có nghiệm duy nhất x = 1
a) 7(m-11)X - 2X + 14 = 5m
<=> ( 7m - 77 - 2 )X = 5m -14
<=> (7m - 79 )X = 5m - 14
TH1: 7m - 79 = 0 <=> m = \(\frac{79}{7}\)
Thay m = \(\frac{79}{7}\), ta có :
0X = 5 x \(\frac{79}{7}\) -14
<=> 0X = \(\frac{297}{7}\)
PT vô nghiệm
TH2: m \(\ne\frac{79}{7}\)
<=> phương trình có nghiệm duy nhất x = \(\frac{5m-14}{7m-79}\)
Phương trình ẩn x : \(m^2x-m^2=4x-3m+2\)( 1 )
\(m^2x-4x=m^2-3m+2\)
\(\left(m^2-4\right)x=\left(m-1\right)\left(m-2\right)\)
- Nếu \(m^2-4\ne0\Leftrightarrow m^2\ne4\Leftrightarrow m\ne\pm2\)
Thì phương trình ( 1 ) có nghiệm duy nhất:
\(x=\frac{\left(m-1\right)\left(m-2\right)}{\left(m-2\right)\left(m+2\right)}=\frac{m-1}{m+2}\)
- Nếu \(m^2-4=0\Leftrightarrow m^2=4\Leftrightarrow m=\pm2\)
- Xét m = 2 thì phương trình ( 1 ) có dạng:
\(\left(2^2-4\right)x=\left(2-1\right)\left(2-2\right)\Leftrightarrow0x=0\)phương trình vô số nghiệm
- Xét m = -2 thì phương trình ( 1 ) có dạng
\(\left[\left(-2\right)^2-4\right]x=\left(-2-1\right)\left(-2-2\right)\)
\(\Leftrightarrow0x=12\)phương trình vô nghiệm
Vậy: Nếu \(m\ne\pm2\) thì phương trình ( 1 ) có nghiệm duy nhất \(x=\frac{m-1}{m+2}\)
Nếu m = 2 thì phương trình ( 1 ) vô số nghiệm
Nếu m = -2 thì phương trình ( 1 ) vô nghiệm