K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

16 tháng 1 2017

(m+1)^2.x +1-m=(7m-5)x

<=>(m^2+2m+1)x +1 -m =7mx-5x

<=>m^2.x+2m+x+1-m-7mx+5x=0

<=>m^2.x-7mx+6x+1-m=0

<=>m^2.x -7mx+6x=m-1

<=>x(m^2-7m+6)=m-1

<=>x.(m^2-m-6m+6)=m-1

<=>x.[(m^2-m)-(6m-6)]=m-1

<=>x.[m.(m-1)-6.(m-1)]=m-1

<=>x.(m-1).(m-6)=m-1 (1)

với m=1 vào pt (1) ta đc

0x=0

<=> pt vô số nghiệm

với m=6 vào pt (1) ta đc

0x=5 <=> pt vô nghiệm

với m#1 và m#6 ta đc nguy duy nhất của pt là x=\(\frac{m-6}{m-1}\)

kl...........................

đúng thì tích nha

haha

28 tháng 6 2019

<=>x-mx≥≥m-1

<=>x(1-m)≥≥m-1(1)

*)Nếu m=1 thì (1)<=>0x=0(thỏa mãn với mọi x)

*)Nếu m < 1 thì 1-m>0

(1)<=>x≥m−11−mx≥m−11−m

<=>x≥≥-1

*)Nếu m>1 thì 1-m<0

(1)<=>x≤m−11−m≤m−11−m

<=>x≤−1≤−1

Vậy...

bó tay :)

3 tháng 2 2017

Nói chung đề thế nào cũng làm được nhưng nghe có vẻ nó ngang thôi

\(m^2x+3m-2=m+x\left(1\right)\)

\(\Leftrightarrow\left(m^2-1\right)x+3m-2=0\) 

nếu m=+-1 \(\Leftrightarrow0.x+-3-2=0\Rightarrow vonghiem\)

nếu m khác +-1 phương trình luôn có nghiệm duy nhất

\(x=\frac{2-3m}{m^2-1}\)

a) \(x_0>0\Rightarrow\frac{2-3m}{m^2-1}>0\Rightarrow\orbr{\begin{cases}m< -1\\\frac{2}{3}< m< 1\end{cases}}\)

b) pt vô nghiệm khi m=+-1

có nghiệm duy nhất x=....khi m khác +-1

3 tháng 2 2017

Xem lại đề.

NV
19 tháng 2 2020

\(\Leftrightarrow\left(a^2-b^2\right)x=b\left(a-b\right)\)

- Với \(a=b\Rightarrow\) pt có vô số nghiệm

- Với \(a=-b\ne0\) pt vô nghiệm

- Với \(a\ne b\) pt có nghiệm duy nhất: \(x=\frac{b}{a+b}\)

1 tháng 2 2020

a, Ta có: \(\forall m\) hệ có nghiệm duy nhất là: \(\left\{{}\begin{matrix}x=\frac{2m+5}{m^2+3}\\y=\frac{5m-6}{m^2+3}\end{matrix}\right.\)

b, Có: \(x+y=1-\frac{m^2}{m^2+3}\)

\(\Leftrightarrow\frac{2m+5}{m^2+3}+\frac{5m-6}{m^2+3}=1-\frac{m^3}{m^2+3}\)

\(\Leftrightarrow m=\frac{7}{4}\)

Vậy .......

11 tháng 2 2021

a) Nếu \(m^4-4=0\Leftrightarrow m^4=4\Leftrightarrow\orbr{\begin{cases}m=\sqrt{2}\\m=-\sqrt{2}\end{cases}}\)

TH1: \(m=\sqrt{2}\) khi đó PT tương đương:

\(\left[\left(\sqrt{2}\right)^4-4\right]x=3\sqrt{2}-6\)

\(\Leftrightarrow0x=3\sqrt{2}-6\)

=> PT vô nghiệm

TH2: \(m=-\sqrt{2}\) khi đó PT tương đương:

\(\left[\left(-\sqrt{2}\right)^4-4\right]x=-3\sqrt{2}-6\)

\(\Leftrightarrow0x=-3\sqrt{2}-6\)

=> PT vô nghiệm

Nếu \(m^4-4\ne0\Rightarrow\orbr{\begin{cases}m\ne\sqrt{2}\\m\ne-\sqrt{2}\end{cases}}\)

Khi đó PT có nghiệm duy nhất: \(x=\frac{3m-6}{m^4-4}\)

KL: Nếu \(m=\pm\sqrt{2}\) thì PT vô nghiệm

      Nếu \(m\ne\pm\sqrt{2}\) thì PT có nghiệm duy nhất \(x=\frac{3m-6}{m^4-4}\)

11 tháng 2 2021

b) Ta có: \(\left(2m+1\right)x-2m=3x-2\)

\(\Leftrightarrow2mx+x-2m-3x+2=0\)

\(\Leftrightarrow2mx-2x=2m-2\)

\(\Leftrightarrow2x\left(m-1\right)=2\left(m-1\right)\)

\(\Leftrightarrow\left(m-1\right)x=m-1\)

Nếu \(m-1=0\Leftrightarrow m=1\) Khi đó PT trở thành:

\(\left(1-1\right)x=1-1\)

\(\Leftrightarrow0x=0\)

=> PT có vô số nghiệm \(x\inℝ\)

Nếu \(m-1\ne0\Rightarrow m\ne1\)

Khi đó PT có nghiệm duy nhất \(x=\frac{m-1}{m-1}=1\)

KL: Nếu m = 1 thì PT có vô số nghiệm \(x\inℝ\)

       Nếu \(m\ne1\) thì PT có nghiệm duy nhất x = 1

31 tháng 3 2018

a)

\(m^2x=m\left(x+2\right)-2\)

\(\Leftrightarrow m^2x=mx+2m-2\)

\(\Leftrightarrow m^2x-mx=2m-2\)

\(\Leftrightarrow x\left(m^2-m\right)=2\left(m-1\right)\)      (1)

+) Nếu \(m^2-m\ne0\Leftrightarrow m\ne0;1\)

Phương trình có 1 nghiệm duy nhất   \(x=\frac{2\left(m-1\right)}{m^2-m}=\frac{2\left(m-1\right)}{m\left(m-1\right)}=\frac{2}{m}\)

+) Nếu \(m=0\)

Phương trình (1) \(\Leftrightarrow0x=-2\) ( vô lí )

\(\Rightarrow\) phương trình vô nghiệm

+) Nếu \(m=1\)

Phương trình (1) \(\Leftrightarrow0x=0\)

\(\Rightarrow\) phương trình có vô số nghiệm

Vậy khi m khác 0 ; 1 thì phương trình có 1 nghiệm duy nhất   \(x=\frac{2}{m}\)

       khi m = 0 thì phương trình vô nghiệm

      khi m = 1 thì phương trình có nghiệm đúng với mọi x

31 tháng 3 2018

b)

\(m^2x+2=4x+m\)

\(\Leftrightarrow m^2x-4x=m-2\)

\(\Leftrightarrow x\left(m^2-4\right)=m-2\)(2)

+) Nếu \(m^2-4\ne0\Leftrightarrow m\ne\pm2\)

Phương trình có 1 nghiệm duy nhất   \(x=\frac{m-2}{m^2-4}=\frac{m-2}{\left(m-2\right)\left(m+2\right)}=\frac{1}{m+2}\)

+) Nếu \(m=2\)

Phương trình (2) \(\Leftrightarrow0x=0\)

\(\Rightarrow\) phương trình có nghiệm đúng với mọi x

+) Nếu \(m=-2\)

Phương trình (2) \(\Leftrightarrow0x=-4\) ( vô lí )

\(\Rightarrow\) phương trình vô nghiệm

Vậy .....

a: Để phương trình vô nghiệm thì m-2=0

hay m=2

Để phương trình có nghiệm duy nhất thì m-2<>0

hay m<>2

b: \(\Leftrightarrow2mx-x=5+2=7\)

=>x(2m-1)=7

Để phương trình vô nghiệm thì 2m-1=0

hay m=1/2

Để phương trình có nghiệm duy nhất thì 2m-1<>0

hay m<>1/2

c: \(\Leftrightarrow x\left(m^2-4\right)=m-2\)

Để phương trình  có nghiệm duy nhất thì (m-2)(m+2)<>0

hay \(m\notin\left\{2;-2\right\}\)

Để phương trình có vô số nghiệm thì m-2=0

hay m=2

để phương trình vô nghiệm thì m+2=0

hay m=-2

d: \(\Leftrightarrow x\left(m^2-1\right)=0\)

Để phương trình có vô số nghiệm thì (m-1)(m+1)=0

hay \(m\in\left\{1;-1\right\}\)

Để phương trình có nghiệm duy nhất thì (m-1)(m+1)<>0

hay \(m\notin\left\{1;-1\right\}\)

8 tháng 2 2018

bài dễ mà :)

Pt ẩn x : \(\left(m^2-1\right)x=m+1\)   ( 1 )

\(\Leftrightarrow\)\(\left(m+1\right)\left(m-1\right)x=m+1\)

- Nếu \(m^2-1\ne0\Leftrightarrow m^2\ne1\Leftrightarrow m\ne\pm1\)

Pt ( 1 ) có nghiệm : \(x=\frac{m+1}{\left(m+1\right)\left(m-1\right)}=\frac{1}{m-1}\)

Nếu \(m+1=0\Leftrightarrow m=-1\)

Pt ( 1 ) có dạng 0x = 0 pt vô số nghiệm

Nếu \(m-1=0\Leftrightarrow m=1\)

Pt ( 1 ) có dạng 0x = 2 pt vô nghiệm

Vậy * \(m\ne\pm1\)pt ( 1 ) có nghiệm duy nhất \(x=\frac{1}{m-1}\)

       * \(m=-1\)pt ( 1 ) vô số nghiệm

      * \(m=1\)pt ( 1 ) vô nghiệm 

1 tháng 5 2018

\(\left(m^2-1\right)x=m+1\)              \(\left(1\right)\)

+) Nếu  \(m^2-1\ne0\Leftrightarrow m\ne\pm1\)

Phương trình có nghiệm duy nhất  \(x=\frac{m+1}{m^2-1}=\frac{1}{m-1}\)

+) Nếu  \(m=1\)

\(\left(1\right)\Leftrightarrow0x=2\) ( vô lí )

+) Nếu  \(m=-1\)

\(\left(1\right)\Leftrightarrow0x=0\) ( luôn đúng )

Vậy với  \(m\ne\pm1\) phương trình có 1 nghiệm duy nhất  \(x=\frac{1}{m-1}\)

       với m =1 thì phương trình vô nghiệm

       với m = -1 thì phương trình có nghiệm đúng với mọi x