Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
d)
\(x\ne a,x\ne b\)
đặt \(\frac{x-a}{x-b}=t\Leftrightarrow t+\frac{1}{t}=2\Leftrightarrow\frac{t^2-2t+1}{t}=0\Rightarrow t=1\)
\(\frac{x-a}{x-b}=1\Leftrightarrow\frac{\left(x-a\right)-\left(x-b\right)}{x-b}=\frac{b-a}{x-b}=0\)
Vậy: \(a\ne b\) Pt vô nghiệm
a=b phương trinhg nghiệm với mọi x khác a, b
a. \(\frac{mx+5}{10}\)+ \(\frac{x+m}{4}\)=\(\frac{m}{20}\)
\(\frac{2mx+10}{20}\)+ \(\frac{5x+5m}{20}\)=\(\frac{m}{20}\)
2mx +10 + 5x +5m =m
x(2m+5)= -4m -10(1)
* 2m+5= 0 => m=-5/2
(1)<=> 0x=0 vậy phương trình 1 vô số nghiệm
* 2m+5 \(\ne\)0=> m\(\ne\)-5/2
pt (1)có nghiệm duy nhất là x= -2(2m+5): (2m+5)=-2
vậy với m=-5/2 phương trình đã cho vô số nghiệm
m\(\ne\)-5/2 phương trình đã cho có nghiệm duy nhất là x=-2
a) Ta có: \(m\left(x-1\right)=5-\left(m-1\right)x\)
\(\Leftrightarrow mx-m-5+mx-x=0\)
\(\Leftrightarrow\left(2m-1\right)x=5\)
-Nếu \(2m-1\ne0\Leftrightarrow m\ne\dfrac{1}{2}\) :pt có dạng \(x=\dfrac{5}{2m-1}\)
=>pt có nghiệm \(x=\dfrac{5}{2m-1}\)
-Nếu \(2mm-1=0\Leftrightarrow m=\dfrac{1}{2}\):pt có dạng \(0x=5\)
\(\Rightarrow\) PT vô nghiệm
Kết luận: Nếu \(m\ne\dfrac{1}{2}\) thì pt có nghiệm \(x=\dfrac{5}{2m-1}\)
Nếu \(m=\dfrac{1}{2}\) thì pt vô nghiệm
d) Ta có: \(m\left(mx-1\right)=x+1\)
\(\Leftrightarrow\left(m^2-1\right)x=m+1\)
\(\Leftrightarrow\left(m-1\right)\left(m+1\right)x=m+1\)
-Nếu\(m=1\) : pt \(\Leftrightarrow0x=2\): pt vô nghiệm
-Nếu\(m\ne1\): pt\(\Leftrightarrow x=\dfrac{1}{m-1}\)
+nếu \(m=-1\): pt \(0x=0\) : pt có vô số nghiệm \(x\) thuộc R
+ nếu \(m\ne-1\): pt \(\Leftrightarrow x=\dfrac{1}{m-1}\)
Kết luận: Nếu \(m=1\) thì pt vô nghiệm
Nếu \(m\ne1\) ,\(m\ne1\) thì pt có nghiệm \(x=\dfrac{1}{m-1}\)
Nếu \(m=-1\) thì pt có vô số nghiệm \(x\) thuộc R
a: =>mx-m=5-mx+x
=>mx-m-5+mx-x=0
=>x(m+m-1)=m+5
=>x(2m-1)=m+5
Để phương trình vô nghiệm thì 2m-1=0
=>m=1/2
Để phương trình có nghiệm duy nhất thì 2m-1<>0
=>m<>1/2
b: =>m^2x-m-x-1=0
=>x(m^2-1)=m+1
Để phương trình có vô số nghiệm thì m+1=0
=>m=-1
Để phương trìnhvô nghiệm thì m-1=0
=>m=1
Để phương trình có nghiệm duy nhất thì m^2-1<>0
=>m<>1 và m<>-1