Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
d)
\(x\ne a,x\ne b\)
đặt \(\frac{x-a}{x-b}=t\Leftrightarrow t+\frac{1}{t}=2\Leftrightarrow\frac{t^2-2t+1}{t}=0\Rightarrow t=1\)
\(\frac{x-a}{x-b}=1\Leftrightarrow\frac{\left(x-a\right)-\left(x-b\right)}{x-b}=\frac{b-a}{x-b}=0\)
Vậy: \(a\ne b\) Pt vô nghiệm
a=b phương trinhg nghiệm với mọi x khác a, b
a. \(\frac{mx+5}{10}\)+ \(\frac{x+m}{4}\)=\(\frac{m}{20}\)
\(\frac{2mx+10}{20}\)+ \(\frac{5x+5m}{20}\)=\(\frac{m}{20}\)
2mx +10 + 5x +5m =m
x(2m+5)= -4m -10(1)
* 2m+5= 0 => m=-5/2
(1)<=> 0x=0 vậy phương trình 1 vô số nghiệm
* 2m+5 \(\ne\)0=> m\(\ne\)-5/2
pt (1)có nghiệm duy nhất là x= -2(2m+5): (2m+5)=-2
vậy với m=-5/2 phương trình đã cho vô số nghiệm
m\(\ne\)-5/2 phương trình đã cho có nghiệm duy nhất là x=-2
Câu 2:
a: \(\Leftrightarrow a^3x-16ax-16a=4a^2+16\)
\(\Leftrightarrow x\left(a^3-16a\right)=4a^2+16a+16=\left(2a+4\right)^2\)
Để phương trình có vô nghiệm thì \(a\left(a-4\right)\left(a+4\right)=0\)
hay \(a\in\left\{0;4;-4\right\}\)
Để phương trình có nghiệm thì \(a\left(a-4\right)\left(a+4\right)< >0\)
hay \(a\notin\left\{0;4;-4\right\}\)
b: \(\Leftrightarrow m^2x+3mx-4x=m-1\)
\(\Leftrightarrow x\left(m^2+3m-4\right)=m-1\)
Để phương trình có vô số nghiệm thì m-1=0
hay m=1
Để phương trình vô nghiệm thì m+4=0
hay m=-4
Để phương trình có nghiệm duy nhất thì (m-1)(m+4)<>0
hay \(m\in R\backslash\left\{1;-4\right\}\)
a)\(\Leftrightarrow-79x+7mx-5m+14=0\)
\(\Leftrightarrow\left(7m-79\right)x-5m+14=0\)
\(\Leftrightarrow x=\dfrac{5m-14}{7m-79}\)\(\left(m\ne\dfrac{79}{7}\right)\)
Vậy để pt có nghiệm thì \(m\ne\dfrac{79}{7}\)
b)\(\Leftrightarrow\left(2m-4\right)x+8m+4-m^2+4=0\)
\(\Leftrightarrow x=\dfrac{m^2-8-8m}{2m-4}\)\(\left(m\ne2\right)\)
Vậy pt có nghiệm \(x=\dfrac{m^2-8-8m}{2m-4}\Leftrightarrow m\ne2\)
mày éo viết được cái đề hẳn họi à ????