\(12x^2-4mx-m^2=0\)

ĐK: ...">

K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

a: TH1: m=-1

Pt trở thành \(-3x-2\cdot\left(-1\right)-1=0\)

=>-3x+1=0

hay x=1/3(nhận)

Th2: m<>-1

\(\text{Δ}=\left(3m\right)^2-4\left(m+1\right)\left(-2m-1\right)\)

\(=9m^2+\left(4m+4\right)\left(2m+1\right)\)

\(=9m^2+8m^2+4m+8m+4\)

\(=17m^2+12m+4\)

Đặt \(17m^2+12m+4=0\)

\(\text{Δ}=12^2-4\cdot17\cdot4=-128< 0\)

Do đó: Phương trình vô nghiệm

b: 

TH2: m<>1/2

\(\text{Δ}=\left(-m\right)^2+4\left(m+1\right)\left(2m-1\right)\)

\(=m^2+\left(4m+4\right)\left(2m-1\right)\)

\(=m^2+8m^2-4m+8m-4\)

\(=9m^2+4m-4\)

Đặt \(9m^2+4m-4=0\)

\(\text{Δ}=4^2-4\cdot9\cdot\left(-4\right)=160>0\)

Do đó: Phương trình có hai nghiệm phân biệt là:

\(\left\{{}\begin{matrix}m_1=\dfrac{-4-4\sqrt{10}}{18}=\dfrac{-2-\sqrt{10}}{9}\left(loại\right)\\m_2=\dfrac{\sqrt{10}-2}{9}\left(nhận\right)\end{matrix}\right.\)

Do đó: Phương trình (1) có hai nghiệm phân biệt

AH
Akai Haruma
Giáo viên
22 tháng 2 2020

Lời giải:
ĐK: $x\neq -5; x\neq 1$

PT \(\Leftrightarrow \frac{(x-m)(x-1)+(x+3)(x+5)}{(x+5)(x-1)}=2\)

\(\Rightarrow (x-m)(x-1)+(x+3)(x+5)=2(x+5)(x-1)\)

\(\Leftrightarrow 2x^2+x(7-m)+m+15=2x^2+8x-10\)

\(\Leftrightarrow x(m+1)=m+25\)

Để PT có 1 nghiệm duy nhất thì:

\(\left\{\begin{matrix} m+1\neq 0\\ -5(m+1)\neq m+25\\ 1(m+1)\neq m+25\end{matrix}\right.\Leftrightarrow \left\{\begin{matrix} m\neq -1\\ m\neq -5\\ 24\neq 0\end{matrix}\right.\Leftrightarrow \left\{\begin{matrix} m\neq -1\\ m\neq -5\end{matrix}\right.\)

Đáp án A

22 tháng 2 2020

Arigato :))

14 tháng 10 2019

Sửa đề: \(P=\left(\frac{1}{\sqrt{x}-1}-\frac{1}{\sqrt{x}}\right):\left(\frac{\sqrt{x}+1}{\sqrt{x}-2}-\frac{\sqrt{x}+2}{\sqrt{x}-1}\right)\)

Bài này chắc là quy đồng full quá nhỉ?

a)P\(=\left(\frac{1}{\sqrt{x}\left(\sqrt{x}-1\right)}\right):\left(\frac{\left(x-1\right)-\left(x-4\right)}{\left(\sqrt{x}-2\right)\left(\sqrt{x}-1\right)}\right)\)

\(=\frac{1}{\sqrt{x}\left(\sqrt{x}-1\right)}:\frac{3}{\left(\sqrt{x}-2\right)\left(\sqrt{x}-1\right)}=\frac{\sqrt{x}-2}{3\sqrt{x}}\)

b) P =1/4 \(\Leftrightarrow\frac{\sqrt{x}-2}{3\sqrt{x}}=\frac{1}{4}\Leftrightarrow\sqrt{x}-2=\frac{3}{4}\sqrt{x}\)

\(\Leftrightarrow\frac{1}{4}\sqrt{x}=2\Leftrightarrow\sqrt{x}=8\Rightarrow x=64\left(TM\right)\)

P/s: Ko chắc..

14 tháng 10 2019

Sửa đề :

a) \(P=\left(\frac{1}{\sqrt{x}-1}-\frac{1}{\sqrt{x}}\right):\left(\frac{\sqrt{x}+1}{\sqrt{x}-2}-\frac{\sqrt{x}+2}{\sqrt{x}-1}\right)\)

\(=\frac{\sqrt{x}-\sqrt{x}+1}{\sqrt{x}\left(\sqrt{x}-1\right)}:\frac{\left(\sqrt{x}+1\right)\left(\sqrt{x}-1\right)-\left(\sqrt{x}-2\right)\left(\sqrt{x}+2\right)}{\left(\sqrt{x}-2\right)\left(\sqrt{x}-1\right)}\)

\(=\frac{1}{\sqrt{x}\left(\sqrt{x}-1\right)}:\frac{x-1-x+4}{\left(\sqrt{x}-2\right)\left(\sqrt{x}-1\right)}=\frac{1}{\sqrt{x}\left(\sqrt{x}-1\right)}.\frac{\left(\sqrt{x}-2\right)\left(\sqrt{x}-1\right)}{3}=\frac{\sqrt{x}-2}{3\sqrt{x}}\)

b) Để P \(=\frac{1}{4}\Leftrightarrow\frac{\sqrt{x}-2}{3\sqrt{x}}=\frac{1}{4}\Leftrightarrow4\left(\sqrt{x}-2\right)=3\sqrt{x}\)

\(\Leftrightarrow4\sqrt{x}-8=3\sqrt{x}\Leftrightarrow\sqrt{x}=8\Leftrightarrow x=64\left(TM\right)\)

29 tháng 11 2015

- Nếu m = 3 ta có: -6x + 2 = 0 \(\Rightarrow x=\frac{1}{3}\)

- Nếu m ≠ 3 thì PT là PT bậc hai. Khi đó:

\(\Delta'=m^2-\left(m-3\right)\left(m-1\right)=m^2-m^2+4m-3=4m-3\)

- Nếu  Δ' = 0 thì PT có nghiệm kép: \(x=\frac{m}{m-3}\)

- Nếu  Δ' > 0 thì PT có 2 nghiệm: \(x_1=\frac{m-\sqrt{4m-3}}{m-3}\text{ hoặc }x_2=\frac{m+\sqrt{4m-3}}{m-3}\)