Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a: TH1: m=-1
Pt trở thành \(-3x-2\cdot\left(-1\right)-1=0\)
=>-3x+1=0
hay x=1/3(nhận)
Th2: m<>-1
\(\text{Δ}=\left(3m\right)^2-4\left(m+1\right)\left(-2m-1\right)\)
\(=9m^2+\left(4m+4\right)\left(2m+1\right)\)
\(=9m^2+8m^2+4m+8m+4\)
\(=17m^2+12m+4\)
Đặt \(17m^2+12m+4=0\)
\(\text{Δ}=12^2-4\cdot17\cdot4=-128< 0\)
Do đó: Phương trình vô nghiệm
b:
TH2: m<>1/2
\(\text{Δ}=\left(-m\right)^2+4\left(m+1\right)\left(2m-1\right)\)
\(=m^2+\left(4m+4\right)\left(2m-1\right)\)
\(=m^2+8m^2-4m+8m-4\)
\(=9m^2+4m-4\)
Đặt \(9m^2+4m-4=0\)
\(\text{Δ}=4^2-4\cdot9\cdot\left(-4\right)=160>0\)
Do đó: Phương trình có hai nghiệm phân biệt là:
\(\left\{{}\begin{matrix}m_1=\dfrac{-4-4\sqrt{10}}{18}=\dfrac{-2-\sqrt{10}}{9}\left(loại\right)\\m_2=\dfrac{\sqrt{10}-2}{9}\left(nhận\right)\end{matrix}\right.\)
Do đó: Phương trình (1) có hai nghiệm phân biệt
Lời giải:
ĐK: $x\neq -5; x\neq 1$
PT \(\Leftrightarrow \frac{(x-m)(x-1)+(x+3)(x+5)}{(x+5)(x-1)}=2\)
\(\Rightarrow (x-m)(x-1)+(x+3)(x+5)=2(x+5)(x-1)\)
\(\Leftrightarrow 2x^2+x(7-m)+m+15=2x^2+8x-10\)
\(\Leftrightarrow x(m+1)=m+25\)
Để PT có 1 nghiệm duy nhất thì:
\(\left\{\begin{matrix} m+1\neq 0\\ -5(m+1)\neq m+25\\ 1(m+1)\neq m+25\end{matrix}\right.\Leftrightarrow \left\{\begin{matrix} m\neq -1\\ m\neq -5\\ 24\neq 0\end{matrix}\right.\Leftrightarrow \left\{\begin{matrix} m\neq -1\\ m\neq -5\end{matrix}\right.\)
Đáp án A
Sửa đề: \(P=\left(\frac{1}{\sqrt{x}-1}-\frac{1}{\sqrt{x}}\right):\left(\frac{\sqrt{x}+1}{\sqrt{x}-2}-\frac{\sqrt{x}+2}{\sqrt{x}-1}\right)\)
Bài này chắc là quy đồng full quá nhỉ?
a)P\(=\left(\frac{1}{\sqrt{x}\left(\sqrt{x}-1\right)}\right):\left(\frac{\left(x-1\right)-\left(x-4\right)}{\left(\sqrt{x}-2\right)\left(\sqrt{x}-1\right)}\right)\)
\(=\frac{1}{\sqrt{x}\left(\sqrt{x}-1\right)}:\frac{3}{\left(\sqrt{x}-2\right)\left(\sqrt{x}-1\right)}=\frac{\sqrt{x}-2}{3\sqrt{x}}\)
b) P =1/4 \(\Leftrightarrow\frac{\sqrt{x}-2}{3\sqrt{x}}=\frac{1}{4}\Leftrightarrow\sqrt{x}-2=\frac{3}{4}\sqrt{x}\)
\(\Leftrightarrow\frac{1}{4}\sqrt{x}=2\Leftrightarrow\sqrt{x}=8\Rightarrow x=64\left(TM\right)\)
P/s: Ko chắc..
Sửa đề :
a) \(P=\left(\frac{1}{\sqrt{x}-1}-\frac{1}{\sqrt{x}}\right):\left(\frac{\sqrt{x}+1}{\sqrt{x}-2}-\frac{\sqrt{x}+2}{\sqrt{x}-1}\right)\)
\(=\frac{\sqrt{x}-\sqrt{x}+1}{\sqrt{x}\left(\sqrt{x}-1\right)}:\frac{\left(\sqrt{x}+1\right)\left(\sqrt{x}-1\right)-\left(\sqrt{x}-2\right)\left(\sqrt{x}+2\right)}{\left(\sqrt{x}-2\right)\left(\sqrt{x}-1\right)}\)
\(=\frac{1}{\sqrt{x}\left(\sqrt{x}-1\right)}:\frac{x-1-x+4}{\left(\sqrt{x}-2\right)\left(\sqrt{x}-1\right)}=\frac{1}{\sqrt{x}\left(\sqrt{x}-1\right)}.\frac{\left(\sqrt{x}-2\right)\left(\sqrt{x}-1\right)}{3}=\frac{\sqrt{x}-2}{3\sqrt{x}}\)
b) Để P \(=\frac{1}{4}\Leftrightarrow\frac{\sqrt{x}-2}{3\sqrt{x}}=\frac{1}{4}\Leftrightarrow4\left(\sqrt{x}-2\right)=3\sqrt{x}\)
\(\Leftrightarrow4\sqrt{x}-8=3\sqrt{x}\Leftrightarrow\sqrt{x}=8\Leftrightarrow x=64\left(TM\right)\)
- Nếu m = 3 ta có: -6x + 2 = 0 \(\Rightarrow x=\frac{1}{3}\)
- Nếu m ≠ 3 thì PT là PT bậc hai. Khi đó:
\(\Delta'=m^2-\left(m-3\right)\left(m-1\right)=m^2-m^2+4m-3=4m-3\)
- Nếu Δ' = 0 thì PT có nghiệm kép: \(x=\frac{m}{m-3}\)
- Nếu Δ' > 0 thì PT có 2 nghiệm: \(x_1=\frac{m-\sqrt{4m-3}}{m-3}\text{ hoặc }x_2=\frac{m+\sqrt{4m-3}}{m-3}\)