K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

Câu 2: 

a: \(\Leftrightarrow a^3x-16ax-16a=4a^2+16\)

\(\Leftrightarrow x\left(a^3-16a\right)=4a^2+16a+16=\left(2a+4\right)^2\)

Để phương trình có vô nghiệm thì \(a\left(a-4\right)\left(a+4\right)=0\)

hay \(a\in\left\{0;4;-4\right\}\)

Để phương trình có nghiệm thì \(a\left(a-4\right)\left(a+4\right)< >0\)

hay \(a\notin\left\{0;4;-4\right\}\)

b: \(\Leftrightarrow m^2x+3mx-4x=m-1\)

\(\Leftrightarrow x\left(m^2+3m-4\right)=m-1\)

Để phương trình có vô số nghiệm thì m-1=0

hay m=1

Để phương trình vô nghiệm thì m+4=0

hay m=-4

Để phương trình có nghiệm duy nhất thì (m-1)(m+4)<>0

hay \(m\in R\backslash\left\{1;-4\right\}\)

31 tháng 3 2017

nó có bằng mấy không vậy

22 tháng 3 2018

\(\dfrac{1}{a+b-x}=\dfrac{1}{a}+\dfrac{1}{b}-\dfrac{1}{x}\\ ĐKXĐ:x\ne0;x\ne-\left(a+b\right)\\ \Rightarrow\dfrac{1}{a+b-x}+\dfrac{1}{x}=\dfrac{1}{a}+\dfrac{1}{b}\\ \Rightarrow\dfrac{x}{x\left(a+b-x\right)}+\dfrac{a+b-x}{x\left(a+b-x\right)}=\dfrac{b}{ab}+\dfrac{a}{ab}\\ \Rightarrow\dfrac{x+a+b-x}{x\left(a+b-x\right)}=\dfrac{b+a}{ab}\\ \Rightarrow\dfrac{a+b}{x\left(a+b-x\right)}=\dfrac{b+a}{ab}\)

+) Với \(a\ne-b\Rightarrow x\left(a+b-x\right)=ab\)

\(\Leftrightarrow ax+bx-x^2=ab\\ \Leftrightarrow ax-x^2=ab-bx\\ \Leftrightarrow x\left(a-x\right)=b\left(a-x\right)\\ \Leftrightarrow x\left(a-x\right)-b\left(a-x\right)=0\\ \Leftrightarrow\left(x-b\right)\left(a-x\right)=0\\ \Leftrightarrow\left[{}\begin{matrix}x-b=0\\x-a=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=b\\x=a\end{matrix}\right.\)

Khi đó : \(\left\{{}\begin{matrix}a\ne0\\a\ne-\left(a+b\right)\\b\ne0\\b\ne-\left(a+b\right)\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}a\ne0\\a\ne-a-b\\b\ne0\\b\ne-a-b\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}a\ne0\\2a\ne-b\\b\ne0\\2b\ne-a\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}a\ne0\\a\ne-\dfrac{b}{2}\\b\ne0\\b\ne-\dfrac{a}{2}\end{matrix}\right.\)

+) Với \(a=-b\Rightarrow0=0\left(nghiệm\text{ }đúng\text{ }\forall x\right)\)

\(\Rightarrow S=R\)

Vậy với \(a\ne-b;a\ne0;b\ne0;a\ne-\dfrac{b}{2};b\ne-\dfrac{a}{2}\), pt có 2 nghiệm \(x=b;x=a\)

Với \(a=-b\), pt vô số nghiệm

a: =>4(2x-1)-12x=3(x+3)+24

=>8x-4-12x=3x+9+24

=>-4x-4=3x+33

=>-7x=37

=>x=-37/7

b: =>(x-2)(x+2+x-9)=0

=>(2x-7)(x-2)=0

=>x=2 hoặc x=7/2

c: =>(x-1)(x+3)-x+3=3x+3

=>x^2+2x-3-x+3=3x+3

=>x^2+x-3x-3=0

=>x^2-2x-3=0

=>(x-3)(x+1)=0

=>x=-1

NV
15 tháng 7 2021

ĐKXĐ: \(x\ne-1\)

Ta có:

\(\dfrac{mx-m-3}{x+1}=1\)

\(\Rightarrow mx-m-3=x+1\)

\(\Leftrightarrow\left(m-1\right)x=m+4\)

- Với \(m=1\) pt trở thành: \(0=5\) (ktm) \(\Rightarrow\) pt vô nghiệm

- Với \(m=-\dfrac{3}{2}\) pt trở thành: 

\(-\dfrac{5}{2}x=\dfrac{5}{2}\Rightarrow x=-1\) (ktm ĐKXĐ) \(\Rightarrow\) pt vô nghiệm

- Với \(m\ne\left\{-\dfrac{3}{2};1\right\}\Rightarrow x=\dfrac{m+4}{m-1}\)

Vậy:

- Với \(m=\left\{-\dfrac{3}{2};1\right\}\) pt vô nghiệm

- Với \(m\ne\left\{-\dfrac{3}{2};1\right\}\) pt có nghiệm duy nhất \(x=\dfrac{m+4}{m-1}\)

4 tháng 3 2022

x= 3m-3/m-2

Tại m =2 thì pt vô nghiệm 

Tại m khác 2 thì có nghiệm duy nhất vì đây là hàm bậc nhất

22 tháng 3 2018

\(\Leftrightarrow\left\{{}\begin{matrix}x\ne\pm a\\x+a+5\left(x-a\right)=12\end{matrix}\right.\) \(\Leftrightarrow3x-2a=6\)

biện luận

a=6 ;-6/5 ; pt vô nghiệm ; a khác 6;-6/5

nghiêm \(x=\dfrac{2a+6}{3}\)

a = 0 chẳng vấn đề gì hết