Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\Leftrightarrow\left\{{}\begin{matrix}x\ne\pm a\\x+a+5\left(x-a\right)=12\end{matrix}\right.\) \(\Leftrightarrow3x-2a=6\)
biện luận
a=6 ;-6/5 ; pt vô nghiệm ; a khác 6;-6/5
nghiêm \(x=\dfrac{2a+6}{3}\)
a = 0 chẳng vấn đề gì hết
ĐK: \(x\ne b;x\ne c\)
Phương trình tương đương:
\(\dfrac{2}{b-x}\left(\dfrac{1}{a}-\dfrac{1}{b}\right)=\dfrac{1}{c-x}\left(\dfrac{1}{a}-\dfrac{1}{b}\right)\)
TH1: Nếu \(a=b\Rightarrow\dfrac{1}{a}=\dfrac{1}{b}\Rightarrow\) pt tương đương \(0=0\) \(\Rightarrow\) đúng với mọi x
TH2: nếu \(a\ne b\), chia cả 2 vế cho \(\dfrac{1}{a}-\dfrac{1}{b}\) ta được:
\(\dfrac{2}{b-x}=\dfrac{1}{c-x}\Leftrightarrow2c-2x=b-x\Leftrightarrow x=2c-b\)
\(\dfrac{1}{a^2}+\dfrac{1}{b^2}+\dfrac{1}{c^2}=\left(\dfrac{1}{a}+\dfrac{1}{b}+\dfrac{1}{c}\right)^2-2.\left(\dfrac{1}{ab}+\dfrac{1}{bc}+\dfrac{1}{ca}\right)=\left(\dfrac{1}{a}+\dfrac{1}{b}+\dfrac{1}{c}\right)^2-2.\dfrac{a+b+c}{abc}=\left(\dfrac{1}{a}+\dfrac{1}{b}+\dfrac{1}{c}\right)^2-2.\dfrac{0}{abc}=\left(\dfrac{1}{a}+\dfrac{1}{b}+\dfrac{1}{c}\right)^2\)
Câu 2:
a: \(\Leftrightarrow a^3x-16ax-16a=4a^2+16\)
\(\Leftrightarrow x\left(a^3-16a\right)=4a^2+16a+16=\left(2a+4\right)^2\)
Để phương trình có vô nghiệm thì \(a\left(a-4\right)\left(a+4\right)=0\)
hay \(a\in\left\{0;4;-4\right\}\)
Để phương trình có nghiệm thì \(a\left(a-4\right)\left(a+4\right)< >0\)
hay \(a\notin\left\{0;4;-4\right\}\)
b: \(\Leftrightarrow m^2x+3mx-4x=m-1\)
\(\Leftrightarrow x\left(m^2+3m-4\right)=m-1\)
Để phương trình có vô số nghiệm thì m-1=0
hay m=1
Để phương trình vô nghiệm thì m+4=0
hay m=-4
Để phương trình có nghiệm duy nhất thì (m-1)(m+4)<>0
hay \(m\in R\backslash\left\{1;-4\right\}\)
\(\dfrac{1}{a+b-x}=\dfrac{1}{a}+\dfrac{1}{b}-\dfrac{1}{x}\\ ĐKXĐ:x\ne0;x\ne-\left(a+b\right)\\ \Rightarrow\dfrac{1}{a+b-x}+\dfrac{1}{x}=\dfrac{1}{a}+\dfrac{1}{b}\\ \Rightarrow\dfrac{x}{x\left(a+b-x\right)}+\dfrac{a+b-x}{x\left(a+b-x\right)}=\dfrac{b}{ab}+\dfrac{a}{ab}\\ \Rightarrow\dfrac{x+a+b-x}{x\left(a+b-x\right)}=\dfrac{b+a}{ab}\\ \Rightarrow\dfrac{a+b}{x\left(a+b-x\right)}=\dfrac{b+a}{ab}\)
+) Với \(a\ne-b\Rightarrow x\left(a+b-x\right)=ab\)
\(\Leftrightarrow ax+bx-x^2=ab\\ \Leftrightarrow ax-x^2=ab-bx\\ \Leftrightarrow x\left(a-x\right)=b\left(a-x\right)\\ \Leftrightarrow x\left(a-x\right)-b\left(a-x\right)=0\\ \Leftrightarrow\left(x-b\right)\left(a-x\right)=0\\ \Leftrightarrow\left[{}\begin{matrix}x-b=0\\x-a=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=b\\x=a\end{matrix}\right.\)
Khi đó : \(\left\{{}\begin{matrix}a\ne0\\a\ne-\left(a+b\right)\\b\ne0\\b\ne-\left(a+b\right)\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}a\ne0\\a\ne-a-b\\b\ne0\\b\ne-a-b\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}a\ne0\\2a\ne-b\\b\ne0\\2b\ne-a\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}a\ne0\\a\ne-\dfrac{b}{2}\\b\ne0\\b\ne-\dfrac{a}{2}\end{matrix}\right.\)
+) Với \(a=-b\Rightarrow0=0\left(nghiệm\text{ }đúng\text{ }\forall x\right)\)
\(\Rightarrow S=R\)
Vậy với \(a\ne-b;a\ne0;b\ne0;a\ne-\dfrac{b}{2};b\ne-\dfrac{a}{2}\), pt có 2 nghiệm \(x=b;x=a\)
Với \(a=-b\), pt vô số nghiệm