Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
PT : \(\frac{1}{x}-\frac{1}{a}+\frac{1}{b}=\frac{1}{x-a+b}\). Điều kiện xác định : \(x\ne0,x\ne a-b\)
\(\Leftrightarrow\frac{ab-bx+ax}{abx}=\frac{1}{x-a+b}\)
\(\Leftrightarrow\left(ab-bx+ax\right)\left(x-a+b\right)=abx\)
\(\Leftrightarrow\left[x\left(a-b\right)+ab\right]\left[x-\left(a-b\right)\right]=abx\)
\(\Leftrightarrow\left[x-\left(a-b\right)\right].x\left(a-b\right)+\left[x-\left(a-b\right)\right].ab=abx\)
\(\Leftrightarrow x^2\left(a-b\right)-x\left(a-b\right)^2+abx-ab\left(a-b\right)=abx\)
\(\Leftrightarrow\left(a-b\right)\left[\left(a-b\right)x^2-\left(a-b\right)x-ab\right]=0\)
Đến đây bạn tự biện luận nhé :)
a) ĐKXĐ : \(x\ne5;x\ne-m\)
Khử mẫu ta được :
\(x^2-m^2+x^2-25=2\left(x+5\right)\left(x+m\right)\)
\(\Leftrightarrow-2x\left(m+5\right)=m^2+10m+25\)
\(\Leftrightarrow-2\left(m+5\right)x=\left(m+5\right)^2\)
Nếu m = -5 thì phương trình có dạng 0x = 0 ; PT này có nghiệm tùy ý. để nghiệm tùy ý này là nghiệm của PT ban đầu thì x \(\ne\pm5\)
Nếu m \(\ne-5\) thì PT có nghiệm \(x=\frac{-\left(m+5\right)^2}{2\left(m+5\right)}=\frac{-\left(m+5\right)}{2}\)
Để nghiệm trên là nghiệm của PT ban đầu thì ta có :
\(\frac{-\left(m+5\right)}{2}\ne-5\)và \(\frac{-\left(m+5\right)}{2}\ne-m\)tức là m \(\ne5\)
Vậy nếu \(m\ne\pm5\)thì \(x=-\frac{m+5}{2}\)là nghiệm của phương trình ban đầu
b) ĐKXĐ : \(x\ne2;x\ne m;x\ne2m\)
PT đã cho đưa về dạng x(m+2) = 2m(4-m)
Nếu m = -2 thì 0x = -24 ( vô nghiệm )
Nếu m \(\ne-2\)thì \(x=\frac{2m\left(4-m\right)}{m+2}\)( \(x\ne2;x\ne m;x\ne2m\) )
Với \(\frac{2m\left(4-m\right)}{m+2}\ne2\) thì \(\left(m-1\right)\left(2m-4\right)\ne0\)hay \(m\ne1;m\ne2\)
Với \(\frac{2m\left(4-m\right)}{m+2}\ne m\)thì \(3m\left(m-2\right)\ne0\)hay \(m\ne0;m\ne2\)
Với \(\frac{2m\left(4-m\right)}{m+2}\ne2m\)thì \(4m\left(m-1\right)\ne0\)hay \(m\ne0;m\ne1\)
Vậy khi \(m\ne\pm2\)và \(m\ne0;m\ne1\)thì PT có nghiệm \(x=\frac{2m\left(4-m\right)}{m+2}\)
1/x - 1/a + 1/b = (1 -1 +1)/(x -a +b) = 1/(x-a+b)
OK CHỨ BẠN____CHÚC HOK TỐT
\(\frac{1}{a+b-x}+\frac{1}{x}=1+\frac{a+b}{ab}\Leftrightarrow\frac{x+a+b-x}{a+b-x}=\frac{a+b}{ab}\Leftrightarrow\left(a+b\right)\left(\frac{1}{x\left(a+b-x\right)}-\frac{1}{ab}\right)=0\Rightarrow x\left(a+b-x\right)\)=>x=a &b
a, Ta có: \(a\left(ax-1\right)=x-1\)
\(\Leftrightarrow a^2x-a=x-1\)
\(\Leftrightarrow a^2x-x=a-1\)
\(\Leftrightarrow x\left(a-1\right)\left(a+1\right)=a-1\)
Với \(a\ne\pm1\)=> Pt có nghiệm duy nhất \(x=\frac{a-1}{a+1}\)
Với \(a=1\)=> Pt có nghiệm đúng với mọi x
Với \(a=-1\)=> Pt vô nghiệm
Mạn phép sửa đề \(\frac{1}{x}-\frac{1}{a}+\frac{1}{b}=\frac{1}{x-\left(a+b\right)}\)ĐKXĐ x khác 0,a+b
\(\Leftrightarrow\frac{1}{x}-\frac{1}{x-\left(a+b\right)}=\frac{1}{a}+\frac{1}{b}\)
\(\Leftrightarrow\frac{x-\left(a+b\right)-x}{x\left(x-a-b\right)}=\frac{a+b}{ab}\)
\(\Leftrightarrow-\frac{1}{x\left(x-\left(a+b\right)\right)}=\frac{1}{ab}\Leftrightarrow x\left(x-a-b\right)=-ab\)\(\Leftrightarrow x\left(x-a\right)-b\left(x-a\right)=0\Leftrightarrow\left(x-b\right)\left(x-a\right)=0\)
Để x=a là nghiệm thì \(\left\{{}\begin{matrix}x=a\ne0\\x=a\ne a+b\end{matrix}\right.\)
Để x=b là nghiệm thì \(\left\{{}\begin{matrix}x=b\ne0\\x=b\ne a+b\end{matrix}\right.\)