Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
TH1: m=-2
Phương trình sẽ trở thành:
\(\left(-2+2\right)x^2-2\left(-2-1\right)x+3-\left(-2\right)=0\)
=>6x+5=0
=>x=-5/6
TH2: m<>-2
\(\text{Δ}=\left[-2\left(m-1\right)\right]^2-4\left(m+2\right)\left(3-m\right)\)
\(=4\left(m^2-2m+1\right)+4\left(m^2-m-6\right)\)
\(=4\left(2m^2-3m-5\right)\)
\(=4\left(2m-5\right)\left(m+1\right)\)
Để phương trình có hai nghiệm phân biệt thì Δ>0
=>4(2m-5)(m+1)>0
=>(2m-5)(m+1)>0
=>\(\left[{}\begin{matrix}m>\dfrac{5}{2}\\m< -1\end{matrix}\right.\)
Để phương trình có nghiệm kép thì Δ=0
=>4(2m-5)(m+1)=0
=>(2m-5)(m+1)=0
=>\(\left[{}\begin{matrix}m=\dfrac{5}{2}\\m=-1\end{matrix}\right.\)
Để phương trình vô nghiệm thì Δ<0
=>(2m-5)(m+1)<0
=>\(-1< m< \dfrac{5}{2}\)
Ta có :
\(\frac{m^2\left[\left(x+2\right)^2-\left(x-2\right)^2\right]}{8}-4x=\left(m-1\right)^2+3\left(2m+1\right)\)
\(\Leftrightarrow m^2x-4x=m^2+4m+4\)
\(\Leftrightarrow\left(m-2\right)\left(m+2\right)x=\left(m+2\right)^2\)
- Nếu \(m\ne\pm2\) thì \(x=\frac{m+2}{m-2}\)
- Nếu \(m=2\) thì \(0x=16\)
=> P/trình vô nghiệm .
- Nếu \(m=-2\) thì \(0x=0\)
=> PT có nghiệm bất kì
.....
Để hệ có nghiệm duy nhất thì \(\dfrac{2}{m+3}\ne\dfrac{3}{-2}\)
=>\(m+3\ne-\dfrac{4}{3}\)
=>\(m\ne-\dfrac{13}{3}\)
Để hệ có vô số nghiệm thì \(\dfrac{2}{m+3}=\dfrac{3}{-2}=\dfrac{1}{-2}\)
mà \(\dfrac{3}{-2}\ne\dfrac{1}{-2}\)
nên \(m\in\varnothing\)
Để hệ vô nghiệm thì \(\dfrac{2}{m+3}=\dfrac{3}{-2}\ne\dfrac{1}{-2}\)
=>\(\dfrac{2}{m+3}=\dfrac{3}{-2}\)
=>\(m+3=-\dfrac{4}{3}\)
=>\(m=-\dfrac{13}{3}\)
Với \(m=0\)
\(PT\Leftrightarrow2x-3=0\Leftrightarrow x=\dfrac{3}{2}\)
Với \(m\ne0\)
\(\Delta'=\left(m-1\right)^2-m\left(m-3\right)=m+1\)
PT vô nghiệm \(\Leftrightarrow m+1< 0\Leftrightarrow m< -1\)
PT có nghiệm kép \(\Leftrightarrow m+1=0\Leftrightarrow m=-1\)
\(\Leftrightarrow x=-\dfrac{b'}{a}=\dfrac{m-1}{2m}\)
PT có 2 nghiệm phân biệt \(\Leftrightarrow m+1>0\Leftrightarrow m>-1;m\ne0\)
\(\Leftrightarrow\left[{}\begin{matrix}x=\dfrac{m-1+\sqrt{m+1}}{m}\\x=\dfrac{m-1-\sqrt{m+1}}{m}\end{matrix}\right.\)
\(\left\{{}\begin{matrix}2x-y=m+5\\\left(m-1\right)x-my=3m-1\end{matrix}\right.\)
Để hệ phương trình có nghiệm duy nhất thì \(\dfrac{2}{m-1}\ne\dfrac{-1}{-m}\)
=>\(\dfrac{2}{m-1}-\dfrac{1}{m}\ne0\)
=>\(\dfrac{2m-m+1}{m\left(m-1\right)}\ne0\)
=>\(\dfrac{m+1}{m\left(m-1\right)}\ne0\)
=>\(m\notin\left\{0;1;-1\right\}\)
Để hệ có phương trình có vô số nghiệm thì \(\dfrac{2}{m-1}=\dfrac{-1}{-m}=\dfrac{m+5}{3m-1}\)
=>\(\left\{{}\begin{matrix}\dfrac{2}{m-1}=\dfrac{1}{m}\\\dfrac{2}{m-1}=\dfrac{m+5}{3m-1}\end{matrix}\right.\)
=>\(\left\{{}\begin{matrix}2m=m-1\\2\left(3m-1\right)=\left(m+5\right)\left(m-1\right)\end{matrix}\right.\)
=>\(\left\{{}\begin{matrix}m=-1\\m^2+4m-5=6m-2\end{matrix}\right.\)
=>\(\left\{{}\begin{matrix}m=-1\\m^2-2m-3=0\end{matrix}\right.\Leftrightarrow m=-1\)
Để hệ phương trình vô nghiệm thì \(\dfrac{2}{m-1}=\dfrac{-1}{-m}\ne\dfrac{m+5}{3m-1}\)
=>\(\left\{{}\begin{matrix}\dfrac{2}{m-1}=\dfrac{-1}{-m}\\\dfrac{2}{m-1}\ne\dfrac{m+5}{3m-1}\end{matrix}\right.\)
=>\(\left\{{}\begin{matrix}-2m=-m+1\\2\left(3m-1\right)\ne\left(m-1\right)\left(m+5\right)\end{matrix}\right.\)
=>\(\left\{{}\begin{matrix}-m=1\\m^2+4m-5\ne6m-2\end{matrix}\right.\)
=>\(\left\{{}\begin{matrix}m=-1\\m^2-2m-3\ne0\end{matrix}\right.\)
=>\(m\in\varnothing\)
\(\left(m-1\right).x=m^2-1\)
\(\left(m-1\right).x=\left(m-1\right).\left(m+1\right)\)
\(\Rightarrow x=m+1\)
p/s: ko chắc
\(\left(m-1\right)x=m^2-1\Leftrightarrow\left(m-1\right)x=\left(m-1\right)\left(m+1\right)\)
Vì: (m-1)x=(m-1)(m+1) ta rút gọn cho (m-1)
Ta có: x=(m+1)