K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

11 tháng 12 2018

\(\left(m-1\right).x=m^2-1\)

\(\left(m-1\right).x=\left(m-1\right).\left(m+1\right)\)

\(\Rightarrow x=m+1\)

p/s: ko chắc 

11 tháng 12 2018

\(\left(m-1\right)x=m^2-1\Leftrightarrow\left(m-1\right)x=\left(m-1\right)\left(m+1\right)\)

Vì: (m-1)x=(m-1)(m+1) ta rút gọn cho (m-1)

Ta có: x=(m+1)

TH1: m=-2

Phương trình sẽ trở thành:

\(\left(-2+2\right)x^2-2\left(-2-1\right)x+3-\left(-2\right)=0\)

=>6x+5=0

=>x=-5/6

TH2: m<>-2

\(\text{Δ}=\left[-2\left(m-1\right)\right]^2-4\left(m+2\right)\left(3-m\right)\)

\(=4\left(m^2-2m+1\right)+4\left(m^2-m-6\right)\)

\(=4\left(2m^2-3m-5\right)\)

\(=4\left(2m-5\right)\left(m+1\right)\)

Để phương trình có hai nghiệm phân biệt thì Δ>0

=>4(2m-5)(m+1)>0

=>(2m-5)(m+1)>0

=>\(\left[{}\begin{matrix}m>\dfrac{5}{2}\\m< -1\end{matrix}\right.\)

Để phương trình có nghiệm kép thì Δ=0

=>4(2m-5)(m+1)=0

=>(2m-5)(m+1)=0

=>\(\left[{}\begin{matrix}m=\dfrac{5}{2}\\m=-1\end{matrix}\right.\)

Để phương trình vô nghiệm thì Δ<0

=>(2m-5)(m+1)<0

=>\(-1< m< \dfrac{5}{2}\)

19 tháng 8 2018

Ta có :

\(\frac{m^2\left[\left(x+2\right)^2-\left(x-2\right)^2\right]}{8}-4x=\left(m-1\right)^2+3\left(2m+1\right)\)

\(\Leftrightarrow m^2x-4x=m^2+4m+4\)

\(\Leftrightarrow\left(m-2\right)\left(m+2\right)x=\left(m+2\right)^2\)

- Nếu \(m\ne\pm2\) thì \(x=\frac{m+2}{m-2}\)

- Nếu \(m=2\) thì \(0x=16\)

=> P/trình vô nghiệm . 

- Nếu \(m=-2\) thì \(0x=0\)

=> PT có nghiệm bất kì 

.....

Để hệ có nghiệm duy nhất thì \(\dfrac{2}{m+3}\ne\dfrac{3}{-2}\)

=>\(m+3\ne-\dfrac{4}{3}\)

=>\(m\ne-\dfrac{13}{3}\)

Để hệ có vô số nghiệm thì \(\dfrac{2}{m+3}=\dfrac{3}{-2}=\dfrac{1}{-2}\)

mà \(\dfrac{3}{-2}\ne\dfrac{1}{-2}\)

nên \(m\in\varnothing\)

Để hệ vô nghiệm thì \(\dfrac{2}{m+3}=\dfrac{3}{-2}\ne\dfrac{1}{-2}\)

=>\(\dfrac{2}{m+3}=\dfrac{3}{-2}\)

=>\(m+3=-\dfrac{4}{3}\)

=>\(m=-\dfrac{13}{3}\)

27 tháng 11 2016

chịu@@@@@@@@@

9 tháng 12 2021

Với \(m=0\)

\(PT\Leftrightarrow2x-3=0\Leftrightarrow x=\dfrac{3}{2}\)

Với \(m\ne0\)

\(\Delta'=\left(m-1\right)^2-m\left(m-3\right)=m+1\)

PT vô nghiệm \(\Leftrightarrow m+1< 0\Leftrightarrow m< -1\)

PT có nghiệm kép \(\Leftrightarrow m+1=0\Leftrightarrow m=-1\)

\(\Leftrightarrow x=-\dfrac{b'}{a}=\dfrac{m-1}{2m}\)

PT có 2 nghiệm phân biệt \(\Leftrightarrow m+1>0\Leftrightarrow m>-1;m\ne0\)

\(\Leftrightarrow\left[{}\begin{matrix}x=\dfrac{m-1+\sqrt{m+1}}{m}\\x=\dfrac{m-1-\sqrt{m+1}}{m}\end{matrix}\right.\)

\(\left\{{}\begin{matrix}2x-y=m+5\\\left(m-1\right)x-my=3m-1\end{matrix}\right.\)

Để hệ phương trình có nghiệm duy nhất thì \(\dfrac{2}{m-1}\ne\dfrac{-1}{-m}\)

=>\(\dfrac{2}{m-1}-\dfrac{1}{m}\ne0\)

=>\(\dfrac{2m-m+1}{m\left(m-1\right)}\ne0\)

=>\(\dfrac{m+1}{m\left(m-1\right)}\ne0\)

=>\(m\notin\left\{0;1;-1\right\}\)

Để hệ có phương trình có vô số nghiệm thì \(\dfrac{2}{m-1}=\dfrac{-1}{-m}=\dfrac{m+5}{3m-1}\)

=>\(\left\{{}\begin{matrix}\dfrac{2}{m-1}=\dfrac{1}{m}\\\dfrac{2}{m-1}=\dfrac{m+5}{3m-1}\end{matrix}\right.\)

=>\(\left\{{}\begin{matrix}2m=m-1\\2\left(3m-1\right)=\left(m+5\right)\left(m-1\right)\end{matrix}\right.\)

=>\(\left\{{}\begin{matrix}m=-1\\m^2+4m-5=6m-2\end{matrix}\right.\)

=>\(\left\{{}\begin{matrix}m=-1\\m^2-2m-3=0\end{matrix}\right.\Leftrightarrow m=-1\)

Để hệ phương trình vô nghiệm thì \(\dfrac{2}{m-1}=\dfrac{-1}{-m}\ne\dfrac{m+5}{3m-1}\)

=>\(\left\{{}\begin{matrix}\dfrac{2}{m-1}=\dfrac{-1}{-m}\\\dfrac{2}{m-1}\ne\dfrac{m+5}{3m-1}\end{matrix}\right.\)

=>\(\left\{{}\begin{matrix}-2m=-m+1\\2\left(3m-1\right)\ne\left(m-1\right)\left(m+5\right)\end{matrix}\right.\)

=>\(\left\{{}\begin{matrix}-m=1\\m^2+4m-5\ne6m-2\end{matrix}\right.\)

=>\(\left\{{}\begin{matrix}m=-1\\m^2-2m-3\ne0\end{matrix}\right.\)

=>\(m\in\varnothing\)