Giải và biện luận hpt \(\left\{{}\begin{matrix}mx+2y=1\\3x+\left(m+1\right)y=-1\end{matrix}\right.\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\Rightarrow\left\{{}\begin{matrix}m^2x+my=2m^2\\x+my=m+1\end{matrix}\right.\)
\(\Rightarrow\left\{{}\begin{matrix}\left(m^2-1\right)x=2m^2-m-1\\x+my=m+1\end{matrix}\right.\)
\(\Rightarrow\left\{{}\begin{matrix}\left(m-1\right)\left(m+1\right)x=\left(m-1\right)\left(2m+1\right)\\x+my=m+1\end{matrix}\right.\)
- Với \(m=1\) hệ có vô số nghiệm
- Với \(m=-1\) hệ vô nghiệm
- Với \(m=\pm1\) hệ có nghiệm duy nhất: \(\left\{{}\begin{matrix}x=\dfrac{2m+1}{m+1}\\y=\dfrac{m}{m+1}\end{matrix}\right.\)
\(\left\{{}\begin{matrix}2x-y=m+5\\\left(m-1\right)x-my=3m-1\end{matrix}\right.\)
Để hệ phương trình có nghiệm duy nhất thì \(\dfrac{2}{m-1}\ne\dfrac{-1}{-m}\)
=>\(\dfrac{2}{m-1}-\dfrac{1}{m}\ne0\)
=>\(\dfrac{2m-m+1}{m\left(m-1\right)}\ne0\)
=>\(\dfrac{m+1}{m\left(m-1\right)}\ne0\)
=>\(m\notin\left\{0;1;-1\right\}\)
Để hệ có phương trình có vô số nghiệm thì \(\dfrac{2}{m-1}=\dfrac{-1}{-m}=\dfrac{m+5}{3m-1}\)
=>\(\left\{{}\begin{matrix}\dfrac{2}{m-1}=\dfrac{1}{m}\\\dfrac{2}{m-1}=\dfrac{m+5}{3m-1}\end{matrix}\right.\)
=>\(\left\{{}\begin{matrix}2m=m-1\\2\left(3m-1\right)=\left(m+5\right)\left(m-1\right)\end{matrix}\right.\)
=>\(\left\{{}\begin{matrix}m=-1\\m^2+4m-5=6m-2\end{matrix}\right.\)
=>\(\left\{{}\begin{matrix}m=-1\\m^2-2m-3=0\end{matrix}\right.\Leftrightarrow m=-1\)
Để hệ phương trình vô nghiệm thì \(\dfrac{2}{m-1}=\dfrac{-1}{-m}\ne\dfrac{m+5}{3m-1}\)
=>\(\left\{{}\begin{matrix}\dfrac{2}{m-1}=\dfrac{-1}{-m}\\\dfrac{2}{m-1}\ne\dfrac{m+5}{3m-1}\end{matrix}\right.\)
=>\(\left\{{}\begin{matrix}-2m=-m+1\\2\left(3m-1\right)\ne\left(m-1\right)\left(m+5\right)\end{matrix}\right.\)
=>\(\left\{{}\begin{matrix}-m=1\\m^2+4m-5\ne6m-2\end{matrix}\right.\)
=>\(\left\{{}\begin{matrix}m=-1\\m^2-2m-3\ne0\end{matrix}\right.\)
=>\(m\in\varnothing\)
a: Để hệ có nghiệm duy nhất thì \(\dfrac{m}{1}\ne\dfrac{1}{m}\)
=>\(m^2\ne1\)
=>\(m\notin\left\{1;-1\right\}\)
Để hệ có vô số nghiệm thì \(\dfrac{m}{1}=\dfrac{1}{m}=\dfrac{3m-1}{m+1}\)
=>\(\left\{{}\begin{matrix}\dfrac{m}{1}=\dfrac{1}{m}\\\dfrac{1}{m}=\dfrac{3m-1}{m+1}\end{matrix}\right.\)
=>\(\left\{{}\begin{matrix}m^2=1\\3m^2-m=m+1\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}m\in\left\{1;-1\right\}\\3m^2-2m-1=0\end{matrix}\right.\)
=>\(\left\{{}\begin{matrix}m\in\left\{1;-1\right\}\\\left(m-1\right)\left(3m+1\right)=0\end{matrix}\right.\)
=>m=1
Để hệ vô nghiệm thì \(\dfrac{m}{1}=\dfrac{1}{m}\ne\dfrac{3m-1}{m+1}\)
=>\(\left\{{}\begin{matrix}\dfrac{m}{1}=\dfrac{1}{m}\\\dfrac{m}{1}\ne\dfrac{3m-1}{m+1}\end{matrix}\right.\)
=>\(\left\{{}\begin{matrix}m^2=1\\m^2+m\ne3m-1\end{matrix}\right.\)
=>\(\left\{{}\begin{matrix}m\in\left\{1;-1\right\}\\m^2-2m+1\ne0\end{matrix}\right.\)
=>m=-1
b: Để hệ có vô số nghiệm thì \(\dfrac{m}{1}=\dfrac{4}{m}=\dfrac{10-m}{4}\)
=>\(\left\{{}\begin{matrix}\dfrac{m}{1}=\dfrac{4}{m}\\\dfrac{4}{m}=\dfrac{10-m}{4}\end{matrix}\right.\)
=>\(\left\{{}\begin{matrix}m^2=4\\10m-m^2=16\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}m\in\left\{2;-2\right\}\\m^2-10m+16=0\end{matrix}\right.\)
=>m=2
Để hệ vô nghiệm thì \(\dfrac{m}{1}=\dfrac{4}{m}\ne\dfrac{10-m}{4}\)
=>\(\left\{{}\begin{matrix}\dfrac{m}{1}=\dfrac{4}{m}\\\dfrac{m}{1}\ne\dfrac{10-m}{4}\end{matrix}\right.\)
=>\(\left\{{}\begin{matrix}m^2=4\\4m\ne10-m\end{matrix}\right.\Leftrightarrow m=-2\)
Để hệ có nghiệm duy nhất thì \(\dfrac{m}{1}\ne\dfrac{4}{m}\)
=>\(m^2\ne4\)
=>\(m\notin\left\{2;-2\right\}\)
a: =>mx=1-2y và 3x+(m+1)y=-1
=>x=-2/m*y+1/m và 3*(y*-2/m+1/m)+(m+1)y=-1
=>\(\Leftrightarrow\left\{{}\begin{matrix}x=\dfrac{-2}{m}\cdot y+\dfrac{1}{m}\\-\dfrac{6}{m}y+\dfrac{3}{m}+\left(m+1\right)y=-1\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}y\left(-\dfrac{6}{m}+m+1\right)+=-1-\dfrac{3}{m}\\x=-\dfrac{2}{m}\cdot y+\dfrac{1}{m}\end{matrix}\right.\)
=>\(\Leftrightarrow\left\{{}\begin{matrix}y\cdot\dfrac{m^2+m-6}{m}=\dfrac{-m-3}{m}\\x=-\dfrac{2}{m}\cdot y+\dfrac{1}{m}\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}y\cdot\dfrac{\left(m+3\right)\left(m-2\right)}{m}=\dfrac{-\left(m+3\right)}{m}\\x=-\dfrac{2}{m}\cdot y+\dfrac{1}{m}\end{matrix}\right.\)
b: Nếu m=0 thì hệ vô nghiệm
Nếu m=-3 thì hệ có vô số nghiệm
Nếu m=2 thì hệ vô nghiệm
nếu m<>0; m<>-3; m<>2 thì hệ có nghiệm duy nhất là
\(\left\{{}\begin{matrix}y=\dfrac{-\left(m+3\right)}{m}:\dfrac{\left(m+3\right)\left(m-2\right)}{m}=-\dfrac{1}{m-2}\\x=\dfrac{2}{m}\cdot\dfrac{1}{m-2}+\dfrac{1}{m}=\dfrac{2+m-2}{m\left(m-2\right)}=\dfrac{m}{m\left(m-2\right)}=\dfrac{1}{m-2}\end{matrix}\right.\)
1. \(\Leftrightarrow\left\{{}\begin{matrix}mx+m^2y=3m\\mx+4y=6\end{matrix}\right.\)
\(\Rightarrow\left(m^2-4\right)y=3\left(m-2\right)\)
\(\Leftrightarrow\left(m-2\right)\left(m+2\right)y=3\left(m-2\right)\)
Để pt có nghiệm duy nhất \(\Rightarrow\left(m-2\right)\left(m+2\right)\ne0\Rightarrow m\ne\pm2\)
Để pt vô nghiệm \(\Rightarrow\left\{{}\begin{matrix}\left(m-2\right)\left(m+2\right)=0\\3\left(m-2\right)\ne0\end{matrix}\right.\) \(\Rightarrow m=-2\)
2. Không thấy m nào ở hệ?
3. Bạn tự giải câu a
b/ \(\left\{{}\begin{matrix}6x+2my=2m\\\left(m^2-m\right)x+2my=m^2-m\end{matrix}\right.\)
\(\Rightarrow\left\{{}\begin{matrix}y=\frac{\left(m-1\right)\left(1-x\right)}{2}\\\left(m^2-m-6\right)x=m^2-3m\end{matrix}\right.\)
Để hệ có nghiệm duy nhất \(\Rightarrow m^2-m-6\ne0\Rightarrow m\ne\left\{-2;3\right\}\)
Khi đó: \(\left\{{}\begin{matrix}x=\frac{m^2-3m}{m^2-m-6}=\frac{m}{m+2}\\y=\frac{\left(m-1\right)\left(1-x\right)}{2}=\frac{m-1}{m+2}\end{matrix}\right.\)
\(x+y^2=1\Leftrightarrow\frac{m}{m+2}+\frac{\left(m-1\right)^2}{\left(m+2\right)^2}=1\)
\(\Leftrightarrow m\left(m+2\right)+\left(m-1\right)^2=\left(m+2\right)^2\)
\(\Leftrightarrow m^2-4m-3=0\Rightarrow\) bấm máy, số xấu
4.
\(\Leftrightarrow\left\{{}\begin{matrix}m^2x+my=2m^2\\x+my=m+1\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}\left(m^2-1\right)x=2m^2-m-1=\left(2m+1\right)\left(m-1\right)\\y=2m-mx\end{matrix}\right.\)
- Với \(m=1\) hệ có vô số nghiệm
- Với \(m=-1\) hệ vô nghiệm
- Với \(m\ne\pm1\) hệ có nghiệm duy nhất:
\(\left\{{}\begin{matrix}x=\frac{\left(2m+1\right)\left(m-1\right)}{\left(m-1\right)\left(m+1\right)}=\frac{2m+1}{m+1}\\y=2m-mx=\frac{m}{m+1}\end{matrix}\right.\)
9: \(\left\{{}\begin{matrix}3x-2=y\\2x+3y=6\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}3x-y=2\\2x+3y=6\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}6x-2y=4\\6x+9y=18\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}-11y=-14\\3x-y=2\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}y=\dfrac{14}{11}\\x=\dfrac{y+2}{3}=\dfrac{\dfrac{14}{11}+2}{3}=\dfrac{12}{11}\end{matrix}\right.\)
\(9,\Leftrightarrow\left\{{}\begin{matrix}3x-2=y\\2x+3\left(3x-2\right)=6\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}3x-2=y\\11x=12\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=\dfrac{12}{11}\\y=\dfrac{14}{11}\end{matrix}\right.\)
\(10,\Leftrightarrow\left\{{}\begin{matrix}2x=2-3y\\2\left(2-3y\right)-y-1=0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}2x=2-3y\\4-6y-y-1=0\end{matrix}\right.\\ \Leftrightarrow\left\{{}\begin{matrix}x=\dfrac{5}{14}\\y=\dfrac{3}{7}\end{matrix}\right.\)