Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
- Với \(m=0\Leftrightarrow2x=2\Rightarrow x=1\) hpt có vô số nghiệm
- Với \(m\ne0\)
\(\Leftrightarrow\left\{{}\begin{matrix}mx+2my=-m\\4x+2my=4\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}\left(m-4\right)x=-m-4\\4x+2my=4\end{matrix}\right.\)
+ Với \(m=4\) hệ vô nghiệm
+ Với \(m\ne4\) hệ có nghiệm duy nhất: \(\left\{{}\begin{matrix}x=\dfrac{-m-4}{m-4}=\dfrac{m+4}{4-m}\\y=\dfrac{2-2x}{m}=\dfrac{4}{m-4}\end{matrix}\right.\)
Vậy:
- Với \(m=0\) hệ vô số nghiệm
- Với \(m=4\) hệ vô nghiệm
- Với \(m\ne\left\{0;4\right\}\) hệ có nghiệm duy nhất \(\left\{{}\begin{matrix}x=\dfrac{m+4}{4-m}\\y=\dfrac{4}{m-4}\end{matrix}\right.\)
\(\left\{{}\begin{matrix}D=m^2-4\\D_x=9m-32\\D_y=8m-9\end{matrix}\right.\)
Hệ có nghiệm duy nhất khi \(D\ne0\Leftrightarrow m^2-4\ne0\Leftrightarrow m\ne\pm2\)
Hệ vô nghiệm khi \(\left\{{}\begin{matrix}D=0\\\left[{}\begin{matrix}D_x\ne0\\D_y\ne0\end{matrix}\right.\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}m=\pm2\\\left[{}\begin{matrix}m\ne\dfrac{32}{9}\\m\ne\dfrac{9}{8}\end{matrix}\right.\end{matrix}\right.\) \(\Leftrightarrow m=\pm2\)
\(\left\{{}\begin{matrix}\left(m-1\right)x-my=3m-1\left(1\right)\\2x-y=m+5\left(2\right)\end{matrix}\right.\)
a) Từ (2) => y=2x-m-5, thay vào (1) ta có:
\(\left(m-1\right)x-m\left(2x-m-5\right)=3m-1\)
=>\(\left(m-1\right)x-2mx+m^2=5m-3m+1=0\)
=> \(\left(m-1-2m\right)x+m^2+2m+1=0\)
<=> \(\left(-m-1\right)x+\left(m+1\right)^2=0\)
<=> \(\left(m+1\right)x=\left(m+1\right)^2\) (*)
+Nếu m=-1 => pt (*) tương đương:
0x=0 => pt (*) vô số nghiệm x => y = 2x+1-5 = 2x-4
=> hệ pt có vô số nghiệm (x;2x-4)
+ Nếu m\(\ne\)1 => pt(*) có nghiệm duy nhất x=\(\dfrac{\left(m+1\right)^2}{m+1}=m+1\)
=> y=2.(m+1)-m-5 = 2m+2-m-5=m-3
=> hpt có nghiệm duy nhất (x;y) =(m+1;m-3)
Vậy với m=-1, hệ pt có vô số nghiệm (x;2x-4)
Với m\(\ne\)-1 hệ pt có nghiệm duy nhất (x;y)=(m+1;m-3)
b) Để 2 đường thẳng của hệ cắt nhau tại 1 điểm nằm trong góc phần tư thức IV của hệ tọa độ Oxy thì hệ pt có nghiệm duy nhất x>0, y<0
=> \(\left\{{}\begin{matrix}m+1>0\\m-3< 0\end{matrix}\right.\Rightarrow\left\{{}\begin{matrix}m>-1\\m< 3\end{matrix}\right.\)
Mà m\(\in\)Z => m\(\in\){0;1;2}
c) Với m≠ -1 thì hệ có nghiệm duy nhất (x;y) = (m+1;m-3)
P=\(x^2+y^2=\left(m+1\right)^2+\left(m-3\right)^2\)
P=\(m^2+2m+1+m^1-6m+9\)
\(P=2m^2-4m+10=2\left(m^2-2m+5\right)=2\left(m^2-2m+1\right)+8=2\left(m-1\right)^2+8\)
Vì (m-1)2 \(\ge\)0 với mọi m ≠-1
=> \(2\left(m-1\right)^2\ge0\)<=> \(2\left(m-1\right)^2+8\ge8\)
=> P\(\ge\) 8
=> P đạt giá trị nhỏ nhất =8 khi m-1=0 <=> m=1
\(\Leftrightarrow\left\{{}\begin{matrix}x^3-y^3=16x-4y\\-4=5x^2-y^2\end{matrix}\right.\)
Nhân vế với vế:
\(-4\left(x^3-y^3\right)=\left(16x-4y\right)\left(5x^2-y^2\right)\)
\(\Leftrightarrow21x^3-5x^2y-4xy^2=0\)
\(\Leftrightarrow x\left(21x^2-2xy-4y^2\right)=0\)
\(\Leftrightarrow x\left(7x-4y\right)\left(3x+y\right)=0\)
\(\Rightarrow\left[{}\begin{matrix}x=0\\y=\dfrac{7x}{4}\\y=-3x\end{matrix}\right.\) thế xuống pt dưới:
\(\Rightarrow\left[{}\begin{matrix}1+y^2=5\\1+\left(\dfrac{7x}{4}\right)^2=5\left(1+x^2\right)\\1+9x^2=5\left(1+x^2\right)\end{matrix}\right.\) \(\Leftrightarrow...\)
a. Hệ có nghiệm duy nhất \(\Rightarrow m\ne\pm2\)
\(\left\{{}\begin{matrix}mx+4y=10-m\\mx+m^2y=4m\end{matrix}\right.\)
\(\Rightarrow\left\{{}\begin{matrix}mx+4y=10-m\\\left(m^2-4\right)y=5m-10\end{matrix}\right.\)
\(\Rightarrow\left\{{}\begin{matrix}y=\dfrac{5}{m+2}\\x=\dfrac{-m+8}{m+2}\end{matrix}\right.\)
Để \(x>0,y>0\Rightarrow\left\{{}\begin{matrix}\dfrac{5}{m+2}>0\\\dfrac{-m+8}{m+2}>0\end{matrix}\right.\) \(\Rightarrow-2< m< 8\)
\(\Rightarrow m=\left\{-1;0;...;7\right\}\)
b. Hệ có nghiệm là các số dương khi \(-2< m< 8\)