K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

14 tháng 2 2020

Ta có :

\(\left\{{}\begin{matrix}2ax+a^2y=5a\\2ax+4y=4a+2\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}\left(a^2-4\right)y=a-2\\2x+ay=5\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}\left(a-2\right)\left(a+2\right)y=a-2\\2x+ay=5\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}y=\frac{1}{a+2}\\2x+\frac{a}{a+2}=5\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}y=\frac{1}{a+2}\\2x=\frac{5\left(a+2\right)-a}{a+2}\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}y=\frac{1}{a+2}\\x=\frac{2a+5}{a+2}\end{matrix}\right.\)

7 tháng 10 2021

\(1,\Leftrightarrow\left\{{}\begin{matrix}x=3-y\\3-y+2y=5\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=3-y\\y=2\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=1\\y=2\end{matrix}\right.\\ 2,\Leftrightarrow\left\{{}\begin{matrix}x-2x-1=3\\y=2x+1\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=-2\\y=2\left(-2\right)+1=-3\end{matrix}\right.\\ 3,\Leftrightarrow\left\{{}\begin{matrix}2x+3x-6=4\\y=x-2\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=2\\y=0\end{matrix}\right.\\ 4,\Leftrightarrow\left\{{}\begin{matrix}x=y+2\\y+2=3y+8\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=y+2\\y=-3\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=-1\\y=-3\end{matrix}\right.\\ 5,\Leftrightarrow\left\{{}\begin{matrix}x=\dfrac{1+y}{2}\\\dfrac{3+3y}{2}-4y=2\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=\dfrac{1+y}{2}\\3+3y-8y=4\end{matrix}\right.\\ \Leftrightarrow\left\{{}\begin{matrix}x=\dfrac{y+1}{2}\\y=-\dfrac{1}{5}\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=\dfrac{2}{5}\\y=-\dfrac{1}{5}\end{matrix}\right.\)

Để hệ có nghiệm duy nhất thì \(\dfrac{2}{m+3}\ne\dfrac{3}{-2}\)

=>\(m+3\ne-\dfrac{4}{3}\)

=>\(m\ne-\dfrac{13}{3}\)

Để hệ có vô số nghiệm thì \(\dfrac{2}{m+3}=\dfrac{3}{-2}=\dfrac{1}{-2}\)

mà \(\dfrac{3}{-2}\ne\dfrac{1}{-2}\)

nên \(m\in\varnothing\)

Để hệ vô nghiệm thì \(\dfrac{2}{m+3}=\dfrac{3}{-2}\ne\dfrac{1}{-2}\)

=>\(\dfrac{2}{m+3}=\dfrac{3}{-2}\)

=>\(m+3=-\dfrac{4}{3}\)

=>\(m=-\dfrac{13}{3}\)

18 tháng 2 2022

\(\left\{{}\begin{matrix}2x+3y=4\\2x+2y=-6\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}y=10\\x=-3-10=-13\end{matrix}\right.\)

18 tháng 2 2022

\(\left\{{}\begin{matrix}4-2x=3y\\x+y=-3\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}2x+3y=4\\x+y=-3\end{matrix}\right.\\ \Leftrightarrow\left\{{}\begin{matrix}2x+3y=4\\2x+2y=-6\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}y=10\\x+y=-3\end{matrix}\right.\\ \Leftrightarrow\left\{{}\begin{matrix}y=10\\x=-7\end{matrix}\right.\)

9 tháng 10 2021

\(\left\{{}\begin{matrix}\dfrac{xy}{4x+3y}=\dfrac{4}{7}\\\dfrac{xy}{2x+y}=\dfrac{4}{5}\end{matrix}\right.\)\(\left(đk:4x\ne-3y,-2x\ne y,xy\ne0\right)\)

\(\Leftrightarrow\left\{{}\begin{matrix}\dfrac{4x+3y}{xy}=\dfrac{7}{4}\\\dfrac{2x+y}{xy}=\dfrac{5}{4}\end{matrix}\right.\)\(\Leftrightarrow\left\{{}\begin{matrix}\dfrac{4x+3y}{xy}=\dfrac{7}{4}\\\dfrac{4x+2y}{xy}=\dfrac{5}{2}\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}\dfrac{1}{x}=-\dfrac{3}{4}\\\dfrac{xy}{2x+y}=\dfrac{4}{5}\end{matrix}\right.\)\(\Leftrightarrow\left\{{}\begin{matrix}x=-\dfrac{4}{3}\\y=1\end{matrix}\right.\)

22 tháng 2 2022

a, Ta có : \(\dfrac{4}{6}=-\dfrac{2}{-3}\ne\dfrac{5}{5}=1\)

vậy hpt vô nghiệm 

b, Ta có \(\dfrac{2}{4}=\dfrac{3}{6}=\dfrac{5}{10}\)-> hệ pt có vô số nghiệm 

NV
29 tháng 6 2019

a/ ĐKXĐ:...

\(\Leftrightarrow x^2+2x+1+2x+3-2\sqrt{2x+3}+1=0\)

\(\Leftrightarrow\left(x+1\right)^2+\left(\sqrt{2x+3}-1\right)^2=0\)

\(\Leftrightarrow\left\{{}\begin{matrix}x+1=0\\\sqrt{2x+3}-1=0\end{matrix}\right.\) \(\Rightarrow x=-1\)

b/ \(\Leftrightarrow\left\{{}\begin{matrix}x^2+3xy=4\\4y^2+xy=5\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}5x^2+15xy=20\\16y^2+4xy=20\end{matrix}\right.\)

\(\Rightarrow5x^2+11xy-16y^2=0\)

\(\Leftrightarrow\left(x-y\right)\left(5x+16y\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}x=y\\x=-\frac{16}{5}y\end{matrix}\right.\)

Bạn tự thế vào một trong hai pt giải tiếp

29 tháng 6 2019

Woa nghiệm đẹp:) Nhưng em giải đúng hay ko là một chuyện:v

ĐK: \(x\ge-\frac{3}{2}\)

PT \(\Leftrightarrow x^2+4x+3+\left(2-2\sqrt{2x+3}\right)=0\)

\(\Leftrightarrow\left(x+1\right)\left(x+3\right)+\frac{4-4\left(2x+3\right)}{2+\sqrt{2x+3}}=0\)

\(\Leftrightarrow\left(x+1\right)\left(x+3\right)-\frac{8\left(x+1\right)}{2+\sqrt{2x+3}}=0\)

\(\Leftrightarrow\left(x+1\right)\left(x+3-\frac{8}{2+\sqrt{2x+3}}\right)=0\)

Giải cái ngoặc nhỏ suy ra x = -1

Giải cái ngoặc to:

\(\Leftrightarrow x+3=\frac{8}{2+\sqrt{2x+3}}\)

Nghiệm xấu quá :( => em bí.

31 tháng 5 2020

a)\(\left\{{}\begin{matrix}8x+2y=4\\8x+3y=5\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}y=1\\4x+1=2\end{matrix}\right.\Leftrightarrow}\left\{{}\begin{matrix}y=1\\x=\frac{1}{4}\end{matrix}\right.\)b)

\(\left\{{}\begin{matrix}12x-8y=44\\12x-15y=9\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}7y=35\\4x-5y=3\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}y=5\\4x-5.5=3\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}y=5\\x=7\end{matrix}\right.\)c)\(\left\{{}\begin{matrix}9x=-18\\4x+3y=13\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=-2\\4.\left(-2\right)+3y=13\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=-2\\y=7\end{matrix}\right.\)

31 tháng 5 2020

bạn giải câu g hộ mỉnh đc ko

4 tháng 3 2022

a, b và c có thể dùng phương pháp thế hoặc cộng trừ đại số

\(a,\left\{{}\begin{matrix}x=1-y\\1-y-y=-5\end{matrix}\right.=>\left\{{}\begin{matrix}x=1-y\\1-2y=-5\end{matrix}\right.=>\left\{{}\begin{matrix}x=1-y\\2y=6\end{matrix}\right.=>\left\{{}\begin{matrix}x=1-y\\y=3\end{matrix}\right.=>\left\{{}\begin{matrix}x=-2\\y=3\end{matrix}\right.\)

Kết luận hpt có 1 nghiệm duy nhất (x;y)=(-2;3)

b và c làm tương tự

4 tháng 3 2022

a.\(\Leftrightarrow\left\{{}\begin{matrix}2x=-4\\x-y=-5\end{matrix}\right.\) ( cộng đại số bạn nhé )

\(\Leftrightarrow\left\{{}\begin{matrix}x=-2\\-2-y=-5\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}x=-2\\y=3\end{matrix}\right.\)

b.\(\Leftrightarrow\left\{{}\begin{matrix}3x=6\\x-2y=1\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}x=2\\2-2y=1\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}x=2\\y=\dfrac{1}{2}\end{matrix}\right.\)

c.\(\Leftrightarrow\left\{{}\begin{matrix}4x+6y=10\\9x-6y=3\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}13x=13\\9x-6y=3\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}x=1\\9.1-6y=3\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}x=1\\y=1\end{matrix}\right.\)