\(\hept{\begin{cases}2\left(m-1\right)\cdot x+y=2\\\left(m+2\...">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

27 tháng 11 2016

chịu@@@@@@@@@

23 tháng 11 2017

\(\hept{\begin{cases}\left(2x-3\right)\left(2y+4\right)=4x\left(y-3\right)+54\\\left(x+1\right)\left(3y-3\right)=3y\left(x+1\right)-12\end{cases}}\)

\(\hept{\begin{cases}4xy+8x-6y-12=4xy-12x+54\\3xy-3x+3y-3=3xy+3y-12\end{cases}}\)

\(\hept{\begin{cases}4xy-4xy+8x+12x-6y-12-54=0\\3xy-3xy-3x+3y-3y-3+12=0\end{cases}}\)

\(\hept{\begin{cases}20x-6y-66=0\\-3x+9=0\end{cases}}\)

\(\hept{\begin{cases}2\left(10x-3y\right)=66\\-3\left(x-3\right)=0\end{cases}}\)

\(\hept{\begin{cases}10x-3y=33\\x-3=0\end{cases}}\)

\(\hept{\begin{cases}10x-3y=33\\x=3\end{cases}}\)

22 tháng 12 2016

Giao luu

15 tháng 10 2016

Do x=0 không là nghiệm của hệ nên hệ phương trình tương đương với

\(\hept{\begin{cases}\frac{8}{x^3}-3y=2\\y^3-3\cdot\frac{2}{x}=2\end{cases}}\).Đặt \(t=\frac{2}{x}\)

\(hpt\Leftrightarrow\hept{\begin{cases}t^3-3y=2\\y^3-3t=2\end{cases}}\).Trừ vế theo vế ta được 

\(t^3-y^3+3\left(t-y\right)=0\) \(\Leftrightarrow\left(t-y\right)\left(t^2+ty+y^2+3\right)=0\)

\(\Leftrightarrow\orbr{\begin{cases}t-y=0\\t^2+ty+y^2+3=0\end{cases}}\)

\(\Leftrightarrow\orbr{\begin{cases}t-y=0\\t^2+ty+\frac{y^2}{4}+\frac{3y^2}{4}+3=0\end{cases}}\)

\(\Leftrightarrow\orbr{\begin{cases}x=y\\\left(t+\frac{y}{2}\right)^2+\frac{3y^2}{4}+3\ge3>0\left(loai\right)\end{cases}}\)

\(\Rightarrow t^3-3t-2=0\Rightarrow\orbr{\begin{cases}t=-1\Rightarrow y=-1\\t=2\Rightarrow y=2\end{cases}}\)

  • Với \(t=-1\Rightarrow\frac{2}{x}=-1\Rightarrow x=-2\Rightarrow u=-1\)
  • Với \(t=2\Rightarrow\frac{2}{t}=2\Rightarrow x=1\Rightarrow y=2\)


Vậy nghiệm hệ phương trình là \(\left(-2,-1\right);\left(1,2\right)\)

16 tháng 10 2016

bn ơi, như cách bn lm pt tương đương đầu tiên phải là

\(\hept{\begin{cases}\frac{8}{x^3}-3y=1\\y^3-3\cdot\frac{2}{x}=1\end{cases}}\)