\(\left\{\begin{matrix}\left(a+b\right).x+\l...">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

11 tháng 2 2017

Lấy (2)-(1) Và (2)-(1) nhân 2

hệ mới

\(\Leftrightarrow\left\{\begin{matrix}ax+ay=b-a\left(3\right)\\-bx+by=b-2a\left(4\right)\end{matrix}\right.\Leftrightarrow\left\{\begin{matrix}ax+ay=b-a\left(3\right)\\bx-by=2a-b\left(4\right)\end{matrix}\right.\)

Nếu a=0; b=0 nghiệm đúng với mọi x,y

Nếu a=0; b khác 0 => (3) hệ vô nghiệm

nếu b=0; a khác 0 => (4) hệ vô nghiệm

\(a,b\ne0\) hệ mới \(\left\{\begin{matrix}x+y=\frac{b-a}{a}\left(5\right)\\x-y=\frac{2a-b}{b}\left(6\right)\end{matrix}\right.\)

cộng và trừ cho nhau \(\left\{\begin{matrix}2x=\frac{b-a}{a}+\frac{2a-b}{b}\\2y=\frac{b-a}{a}-\frac{2a-b}{b}\end{matrix}\right.\)

\(\Leftrightarrow\left\{\begin{matrix}x=\frac{b^2+2a^2-2ab}{2ab}\\y=\frac{b^2-2a^2}{2ab}\end{matrix}\right.\)

Kết luận:

Với a hoặc b =0 hệ vô nghiệm

Với a và b=0 hệ vô số nghiệm " với mọi x,y"

Với a và b khác 0 hệ có nghiệm duy nhất:\(\left\{\begin{matrix}x=\frac{b^2+2a^2-2ab}{2ab}\\y=\frac{b^2-2a^2}{2ab}\end{matrix}\right.\)

28 tháng 1 2021

a, Đặt \(\hept{\begin{cases}\frac{1}{x}=u\\\frac{1}{y}=v\end{cases}}\left(u;v\ne0\right)\)

\(\Leftrightarrow\hept{\begin{cases}u+v=\frac{5}{6}\\\frac{1}{6}u+\frac{1}{5}v=\frac{3}{20}\end{cases}}\Leftrightarrow\hept{\begin{cases}u=\frac{5}{6}-v\left(1\right)\\\frac{1}{6}u+\frac{1}{5}v=\frac{3}{20}\left(2\right)\end{cases}}\)

Thay (1) vào (2) ta được : \(\frac{1}{6}\left(\frac{5}{6}-v\right)+\frac{1}{5}v=\frac{3}{20}\)

\(\Leftrightarrow\frac{5}{36}-\frac{v}{6}+\frac{v}{5}=\frac{3}{20}\)

\(\Leftrightarrow\frac{-v}{6}+\frac{v}{5}=\frac{3}{20}-\frac{5}{36}\Leftrightarrow\frac{v}{30}=\frac{1}{90}\Leftrightarrow v=\frac{1}{3}\)(*)

hay \(v=\frac{1}{3}=\frac{1}{y}\Rightarrow y=3\)

Thay (*) vào (1) ta được : \(u=\frac{5}{6}-\frac{1}{3}=\frac{1}{2}\)hay \(u=\frac{1}{2}=\frac{1}{x}\Rightarrow x=2\)

Vậy x = 2 ; y = 3 

28 tháng 1 2021

b, \(\hept{\begin{cases}4\left(x+y\right)=5\left(x-y\right)\\\frac{40}{x+y}+\frac{40}{x-y}=9\end{cases}}\Leftrightarrow\hept{\begin{cases}\frac{4}{x-y}=\frac{5}{x+y}\left(1\right)\\\frac{40}{x+y}+\frac{40}{x-y}=9\left(2\right)\end{cases}}\)

Xét phương trình 1 ta có : \(\frac{4}{x-y}-\frac{5}{x+y}=0\)

\(\Leftrightarrow\frac{4\left(x+y\right)-5\left(x-y\right)}{\left(x+y\right)\left(x-y\right)}=0\Leftrightarrow4x+4y-5x+5y=0\)

\(\Leftrightarrow-x+9y=0\Leftrightarrow x=9y\)(*) 

Thay vào 2 ta có : \(\frac{40}{9y+y}+\frac{40}{9y-y}=9\)

\(\Leftrightarrow\frac{4}{y}+\frac{5}{y}=9\Leftrightarrow\frac{9}{y}=9\Leftrightarrow y=1\)

Thay y = 1 vào (*) ta có : \(x=9.1=9\)

Vậy x = 9 ; y = 1

NV
13 tháng 5 2020

b/ \(\left\{{}\begin{matrix}x^4+y^4=97\\xy\left(x^2+y^2\right)=78\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}\left(x^2+y^2\right)^2-2x^2y^2=97\\xy\left(x^2+y^2\right)=78\end{matrix}\right.\)

Đặt \(\left\{{}\begin{matrix}x^2+y^2=a>0\\xy=b\end{matrix}\right.\) với \(a\ge2b\) hệ trở thành:

\(\left\{{}\begin{matrix}a^2-2b^2=97\\ab=78\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}a^2-2b^2=97\\b=\frac{78}{a}\end{matrix}\right.\)

\(\Rightarrow a^2-2\left(\frac{78}{a}\right)^2=97\)

\(\Leftrightarrow a^4-97a^2-12168=0\Rightarrow\left[{}\begin{matrix}a^2=169\\a^2=-72\left(l\right)\end{matrix}\right.\)

\(\Rightarrow\left[{}\begin{matrix}a=13\Rightarrow b=6\\a=-13< 0\left(l\right)\end{matrix}\right.\)

\(\Rightarrow\left\{{}\begin{matrix}x^2+y^2=13\\xy=6\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}x^2+y^2=13\\y=\frac{6}{x}\end{matrix}\right.\)

\(\Rightarrow x^2+\frac{36}{x^2}=13\Leftrightarrow x^4-13x^2+36=0\) \(\Rightarrow\left[{}\begin{matrix}x^2=9\\x^2=4\end{matrix}\right.\)

\(\Rightarrow\left[{}\begin{matrix}x=3\Rightarrow y=2\\x=-3\Rightarrow y=-2\\x=2\Rightarrow y=3\\x=-2\Rightarrow y=-3\end{matrix}\right.\)

NV
13 tháng 5 2020

a/ \(\left\{{}\begin{matrix}xy+1+x+y=10\\\left(x+y\right)\left(xy+1\right)=1\end{matrix}\right.\)

Đặt \(\left\{{}\begin{matrix}x+y=a\\xy+1=b\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}a+b=10\\ab=1\end{matrix}\right.\)

Theo Viet đảo, a và b là nghiệm:

\(t^2-10t+1=0\) \(\Rightarrow\left[{}\begin{matrix}t=5+2\sqrt{6}\\t=5-2\sqrt{6}\end{matrix}\right.\)

TH1: \(\left\{{}\begin{matrix}x+y=5+2\sqrt{6}\\xy=4-2\sqrt{6}\end{matrix}\right.\)

Theo Viet đảo, x và y là nghiệm:

\(t^2-\left(5+2\sqrt{6}\right)t+4-2\sqrt{6}=0\) (bấm máy, số xấu quá)

TH2: \(\left\{{}\begin{matrix}x+y=5-2\sqrt{6}\\xy=4+2\sqrt{6}\end{matrix}\right.\)

Ta có \(\left(5-2\sqrt{6}\right)^2-4\left(4+2\sqrt{6}\right)=33-28\sqrt{6}< 0\) nên vô nghiệm

NV
13 tháng 5 2020

a/ Trừ pt trên cho dưới:

\(\left|y-2\right|-3y=-2\)

- Với \(y\ge2\Rightarrow y-2-3y=-2\Rightarrow y=0\left(l\right)\)

- Với \(y< 2\Rightarrow2-y-3y=-2\Rightarrow y=1\)

Thay vào pt dưới:

\(\left|x-1\right|+3=3\Rightarrow\left|x-1\right|=0\Rightarrow x=1\)

Vậy hệ có nghiệm duy nhất \(\left(x;y\right)=\left(1;1\right)\)

b/ \(\Leftrightarrow\left\{{}\begin{matrix}\left|x-2\right|+2\left|y-1\right|=9\\2x+2\left|y-1\right|=-2\end{matrix}\right.\)

Trừ trên cho dưới:

\(\left|x-2\right|-2x=11\)

- Với \(x\ge2\Rightarrow x-2-2x=11\Rightarrow x=-13\left(l\right)\)

- Với \(x< 2\Rightarrow2-x-2x=11\Rightarrow x=-3\)

Thay vào pt dưới:

\(-3+\left|y-1\right|=-1\Rightarrow\left|y-1\right|=2\Rightarrow\left[{}\begin{matrix}y=3\\y=-1\end{matrix}\right.\)

Vậy nghiệm của hệ là \(\left(x;y\right)=\left(-3;3\right);\left(-3;-1\right)\)

2 tháng 12 2021

Đặt S=x+y, P=x.y
Ta có:S=2a-1, x^2+y^2=S^2-2P=a^2+2a-3
\Rightarrow P=\frac{1}{2}[(2a-1)^2-(a^2+2a-3)]=\frac{1}{2}(3a^2-6a+4)
Trước hết tìm a để hệ có nghiệm.
Điều kiện để hệ có nghiệm:S^2-4P \geq 0 \Leftrightarrow (2a-1)^2-2(3a^2-6a+4)\geq 0
\Leftrightarrow -2a^2+8a-7 \geq 0 \leftrightarrow 2-\frac{\sqrt{2}}{2} \leq a \leq 2+\frac{\sqrt{2}}{2}      (1)
Tìm a để P=\frac{1}{2}(3a^2-6a+4) đạt giá trị nhỏ nhất trên đoạn
        [2-\frac{\sqrt{2}}{2} ;2+\frac{\sqrt{2}}{2}]
Ta có hoành độ đỉnh a_0=\frac{6}{2.3}=1Parabol có bề lõm quay lên do đó \min P=P(2-\frac{\sqrt{2}}{2} )$
Vậy với a=2-\frac{\sqrt{2}}{2}  thì xy đạt giá trị nhỏ nhất.

Bìa 1: Gải các hệ phương trình: a) \(\left\{{}\begin{matrix}x-y=3\\3x-4y=2\end{matrix}\right.\) b)\(\left\{{}\begin{matrix}\dfrac{x}{2}-\dfrac{y}{3}=1\\5x-8y=3\end{matrix}\right.\) Bài 2: Gải các hệ phương trình: a) \(\left\{{}\begin{matrix}2\left(x+y\right)+3\left(x-y\right)=4\\\left(x+y\right)+2\left(x-y\right)=5\end{matrix}\right.\) b)...
Đọc tiếp

Bìa 1: Gải các hệ phương trình:

a) \(\left\{{}\begin{matrix}x-y=3\\3x-4y=2\end{matrix}\right.\) b)\(\left\{{}\begin{matrix}\dfrac{x}{2}-\dfrac{y}{3}=1\\5x-8y=3\end{matrix}\right.\)

Bài 2: Gải các hệ phương trình:

a) \(\left\{{}\begin{matrix}2\left(x+y\right)+3\left(x-y\right)=4\\\left(x+y\right)+2\left(x-y\right)=5\end{matrix}\right.\) b) \(\left\{{}\begin{matrix}\left(x+1\right)\left(y-1\right)=xy-1\\\left(x-3\right)\left(y+3\right)=xy-3\end{matrix}\right.\)

Bài 3: Gải các hệ phương trình:

a) \(\left\{{}\begin{matrix}\dfrac{1}{x-2}+\dfrac{1}{2y-1}=2\\\dfrac{2}{x-2}-\dfrac{3}{2y-1}=1\end{matrix}\right.\) b) \(\left\{{}\begin{matrix}\dfrac{1}{2x+y}+\dfrac{1}{x-2y}=\dfrac{5}{8}\\\dfrac{1}{2x+y}-\dfrac{1}{x-2y}=\dfrac{3}{8}\end{matrix}\right.\)

c)\(\left\{{}\begin{matrix}3\sqrt{x-1}+2\sqrt{y}=13\\2\sqrt{x-1}-\sqrt{y}=4\end{matrix}\right.\) d) \(\left\{{}\begin{matrix}\left|x-1\right|+\left|y+2\right|=2\\4\left|x-1\right|+3\left|y+2\right|=7\end{matrix}\right.\)

Bài 4: Cho hệ phương trình \(\left\{{}\begin{matrix}\left(3a-2\right)x+2\left(2b+1\right)y=30\\\left(a+2\right)x-2\left(3b-1\right)y=-20\end{matrix}\right.\) Tìm các giá trị của a,b để hệ phương trình có nghiệm (3;-1)

cảm ơn mn trước ạ ! hehe

2
12 tháng 1 2019

3a)\(\left\{{}\begin{matrix}\dfrac{1}{x-2}+\dfrac{1}{2y-1}=2\\\dfrac{2}{x-2}-\dfrac{3}{2y-1}=1\end{matrix}\right.\) (ĐK: x≠2;y≠\(\dfrac{1}{2}\))

Đặt \(\dfrac{1}{x-2}=a;\dfrac{1}{2y-1}=b\) (ĐK: a>0; b>0)

Hệ phương trình đã cho trở thành

\(\left\{{}\begin{matrix}a+b=2\\2a-3b=1\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}a=2-b\\2\left(2-b\right)-3b=1\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}a=2-b\\4-2b-3b=1\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}a=2-b\\b=\dfrac{3}{5}\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}a=\dfrac{7}{5}\left(TM\text{Đ}K\right)\\b=\dfrac{3}{5}\left(TM\text{Đ}K\right)\end{matrix}\right.\) Khi đó \(\left\{{}\begin{matrix}\dfrac{1}{x-2}=\dfrac{7}{5}\\\dfrac{1}{2y-1}=\dfrac{3}{5}\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}7\left(x-2\right)=5\\3\left(2y-1\right)=5\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}7x-14=5\\6y-3=5\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=\dfrac{19}{7}\left(TM\text{Đ}K\right)\\y=\dfrac{4}{3}\left(TM\text{Đ}K\right)\end{matrix}\right.\) Vậy hệ phương trình đã cho có nghiệm duy nhất (x;y)=\(\left(\dfrac{19}{7};\dfrac{4}{3}\right)\)

b) Bạn làm tương tự như câu a kết quả là (x;y)=\(\left(\dfrac{12}{5};\dfrac{-14}{5}\right)\)

c)\(\left\{{}\begin{matrix}3\sqrt{x-1}+2\sqrt{y}=13\\2\sqrt{x-1}-\sqrt{y}=4\end{matrix}\right.\)(ĐK: x≥1;y≥0)

\(\Leftrightarrow\left\{{}\begin{matrix}3\sqrt{x-1}+2\sqrt{y}=13\\\sqrt{y}=2\sqrt{x-1}-4\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}3\sqrt{x-1}+4\sqrt{x-1}=13\\\sqrt{y}=2\sqrt{x-1}-4\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}7\sqrt{x-1}=13\\\sqrt{y}=2\sqrt{x-1}-4\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}49\left(x-1\right)=169\\\sqrt{y}=2\sqrt{x-1}-4\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}49x-49=169\\\sqrt{y}=2\sqrt{x-1}-4\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=\dfrac{218}{49}\\y=\dfrac{4}{49}\end{matrix}\right.\left(TM\text{Đ}K\right)\)

31 tháng 12 2022

Bài 4:

Theo đề, ta có hệ:

\(\left\{{}\begin{matrix}3\left(3a-2\right)-2\left(2b+1\right)=30\\3\left(a+2\right)+2\left(3b-1\right)=-20\end{matrix}\right.\)

=>9a-6-4b-2=30 và 3a+6+6b-2=-20

=>9a-4b=38 và 3a+6b=-20+2-6=-24

=>a=2; b=-5

3 tháng 4 2020

a,\(\left\{{}\begin{matrix}x=35\left(y+2\right)\\x=50\left(y-1\right)\end{matrix}\right.\)

suy ra :35(y+2)=50(y-1)

=>35y+70=50y-50

=>y=8

=>x=350

vậy :\(\left\{{}\begin{matrix}x=350\\y=8\end{matrix}\right.\)

b.\(\left\{{}\begin{matrix}y=2x-3\\y=x-1\end{matrix}\right.\)

suy ra: 2x-3=x-1

=>x=2

=>y=1

vậy \(\left\{{}\begin{matrix}x=2\\y=1\end{matrix}\right.\)

c.\(\left\{{}\begin{matrix}\left(x+14\right).\left(y-2\right)=xy\\\left(x-4\right).\left(y-1\right)=xy\end{matrix}\right.\)

=>\(\left\{{}\begin{matrix}-2x+14=0\\-x-y=0\end{matrix}\right.\)

vậy:\(\left\{{}\begin{matrix}x=0\\y=0\end{matrix}\right.\)

d,\(\left\{{}\begin{matrix}y=\frac{6-x}{4}\\y=\frac{4x-5}{3}\end{matrix}\right.\)

x=2

y=1

vậy...

1 tháng 8 2018

mk lm câu khó nhất trong các câu này , rồi bn làm tương tự với các câu còn lại nha .

d) ta có : \(\left\{{}\begin{matrix}2x-y=3+2m\\mx+y=\left(m+1\right)^2\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}y=2x-3-2m\\mx+2x-3-2m=m^2+2m+1\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}y=2x-3-2m\\mx+2x=m^2+4m+4\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}y=2x-3-2m\\\left(m+2\right)x=\left(m+2\right)^2\end{matrix}\right.\).....(1)

th1: \(m+2=0\Leftrightarrow m=-2\)

khi đó ta có : (1) \(\Leftrightarrow\left\{{}\begin{matrix}y=2x-3-2m\\0x=0\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}x\in R\\y=2x+1\end{matrix}\right.\)

\(\Rightarrow\) phương trình có vô số nghiệm

th2: \(m+2\ne0\Leftrightarrow m\ne-2\)

khi đó ta có : (1) \(\Leftrightarrow\left\{{}\begin{matrix}y=2x-3-2m\\x=m+2\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}x=m+2\\y=1\end{matrix}\right.\)

\(\Rightarrow\) phương trình có nghiệm duy nhất \(\left\{{}\begin{matrix}x=m+2\\y=1\end{matrix}\right.\)

vậy khi +) \(m=-2\) phương trình có vô số nghiệm

+) khi \(m\ne-2\) phương trình có nghiệm duy nhất là \(\left\{{}\begin{matrix}x=m+2\\y=1\end{matrix}\right.\)

25 tháng 8 2018

Bạn làm phần c hộ mình với

NV
26 tháng 7 2020

c/

\(\Leftrightarrow\left\{{}\begin{matrix}x^2+x+y^2+y=8\\\left(x^2+x\right)\left(y^2+y\right)=12\end{matrix}\right.\)

Đặt \(\left\{{}\begin{matrix}x^2+x=a\\y^2+y=b\end{matrix}\right.\)

\(\Rightarrow\left\{{}\begin{matrix}a+b=8\\ab=12\end{matrix}\right.\) theo Viet đảo, a và b là nghiệm:

\(t^2-8t+12=0\Rightarrow\left[{}\begin{matrix}t=6\\t=2\end{matrix}\right.\)

\(\Rightarrow\left[{}\begin{matrix}\left\{{}\begin{matrix}x^2+x=6\\y^2+y=2\end{matrix}\right.\\\left\{{}\begin{matrix}x^2+x=2\\y^2+y=6\end{matrix}\right.\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}\left\{{}\begin{matrix}x^2+x-6=0\\y^2+y-2=0\end{matrix}\right.\\\left\{{}\begin{matrix}x^2+x-2=0\\y^2+y-6=0\end{matrix}\right.\end{matrix}\right.\)

Bạn tự bấm máy

NV
26 tháng 7 2020

b/

\(\Leftrightarrow\left\{{}\begin{matrix}x+y+xy+1=0\\\left(x+y\right)^2-2xy-x-y=22\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}2\left(x+y\right)+2xy+2=0\\\left(x+y\right)^2-2xy-x-y-22=0\end{matrix}\right.\)

\(\Rightarrow\left(x+y\right)^2+\left(x+y\right)-20=0\)

\(\Rightarrow\left[{}\begin{matrix}x+y=4\Rightarrow xy=-5\\x+y=-5\Rightarrow xy=4\end{matrix}\right.\)

TH1: \(\left\{{}\begin{matrix}x+y=4\\xy=-5\end{matrix}\right.\) thì x; y là nghiệm:

\(t^2-4t-5=0\Rightarrow\left[{}\begin{matrix}t=-1\\t=5\end{matrix}\right.\)

\(\Rightarrow\left(x;y\right)=\left(-1;5\right);\left(5;-1\right)\)

TH2: \(\left\{{}\begin{matrix}x+y=-5\\xy=4\end{matrix}\right.\) thì x; y là nghiệm:

\(t^2+5t+4=0\Rightarrow\left[{}\begin{matrix}t=-1\\t=-4\end{matrix}\right.\)

\(\Rightarrow\left(x;y\right)=\left(-1;-4\right);\left(-4;-1\right)\)

a. \(\left\{\begin{matrix}x\left(y-2\right)-\left(y-2\right)=0\\3x+y=8\end{matrix}\right.\)

\(\Leftrightarrow\left\{\begin{matrix}\left(y-2\right)\left(x-1\right)=0\\3x+y=8\end{matrix}\right.\)

\(\Leftrightarrow\left\{\begin{matrix}\left[\begin{matrix}y-2=0\\x-1=0\end{matrix}\right.\\3x+y=8\end{matrix}\right.\)

\(\Leftrightarrow\left\{\begin{matrix}\left[\begin{matrix}y=2\\x=1\end{matrix}\right.\\3x+y=8\end{matrix}\right.\)

\(\Leftrightarrow\left[\begin{matrix}\left\{\begin{matrix}y=2\\3x+y=8\end{matrix}\right.\\\left\{\begin{matrix}x=1\\3x+y=8\end{matrix}\right.\end{matrix}\right.\)

Giải hệ phương trình ta được:

\(\left[\begin{matrix}\left\{\begin{matrix}y=2\\x=2\end{matrix}\right.\\\left\{\begin{matrix}x=1\\y=5\end{matrix}\right.\end{matrix}\right.\)

Vậy hệ phương trình đã cho có tập nghiệm \(S=\left\{\left(2;2\right),\left(1;5\right)\right\}\)

23 tháng 2 2017

b)\(\text{HPT}\Leftrightarrow \)\(\left\{\begin{matrix}\left(x+y\right)^2-4\left(x+y\right)=12\\\left(x-y\right)^2-2\left(x-y\right)=3\end{matrix}\right.\)

\(\Leftrightarrow\left\{\begin{matrix}a^2-4a=12\\b^2-2b=3\end{matrix}\right.\)\(\left(\left\{\begin{matrix}a=x+y\\b=x-y\end{matrix}\right.\right)\)

\(\Leftrightarrow\left\{\begin{matrix}\left[\begin{matrix}a=-2\\a=6\end{matrix}\right.\\\left[\begin{matrix}b=3\\b=-1\end{matrix}\right.\end{matrix}\right.\) Thay vào ...