Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\left\{{}\begin{matrix}2x+\left(3m+1\right)y=m-1\\\left(m+2\right)x+\left(4m+3\right)y=m\end{matrix}\right.\)
\(\Rightarrow\left\{{}\begin{matrix}2\left(m+2\right)x+\left(m+2\right)\left(3m+1\right)y=\left(m-1\right)\left(m+2\right)\\2\left(m+2\right)x+2\left(4m+3\right)y=2m\end{matrix}\right.\)
\(\Rightarrow\left(m+2\right)\left(3m+1\right)y-2.\left(4m+3\right)y\)\(=\left(m-1\right)\left(m+2\right)-2m\)
\(\Leftrightarrow\left(3m^2-m-4\right)y=m^2-m-2\)
\(\Leftrightarrow\left(m+1\right)\left(3m-4\right)y=\left(m+1\right)\left(m-2\right)\) (*)
Th1: \(\left(m+1\right)\left(3m-4\right)=0\Leftrightarrow\left[{}\begin{matrix}m=-1\\m=\dfrac{4}{3}\end{matrix}\right.\)
Với \(m=-1\) thay vào hệ phương trình ta được:
\(\left\{{}\begin{matrix}2x-2y=-2\\x-y=-1\end{matrix}\right.\)\(\Leftrightarrow x=y-1\).
Khi đó hệ phương trình có vô số nghiệm dạng: \(\left\{{}\begin{matrix}x=y-1\\y\in R\end{matrix}\right.\).
Với \(m=\dfrac{4}{3}\) thay vào (*) ta được: \(0y=-\dfrac{2}{3}\) (Vô nghiệm)
Khi đó hệ phương trình vô nghiệm.
Th2: \(\left(m+1\right)\left(3m-4\right)\ne0\Leftrightarrow\left\{{}\begin{matrix}m\ne-1\\m\ne\dfrac{4}{3}\end{matrix}\right.\).
Khi đó (*) có nghiệm: \(y=\dfrac{m-2}{3m-4}\).
Thay vào ta được: \(2x+\left(3m+1\right).\dfrac{m-2}{3m-4}=m-1\)
\(\Leftrightarrow x=\dfrac{3-m}{3m-4}\).
Thử lại: \(\left(x;y\right)=\left(\dfrac{3-m}{3m-4};\dfrac{m-2}{3m-4}\right)\) thỏa mãn hệ phương trình.
Biện luận:
Với \(m=-1\) hệ phương trình có vô số nghiệm loại: \(\left\{{}\begin{matrix}x=y-1\\y\in R\end{matrix}\right.\).
Với \(m=\dfrac{4}{3}\) hệ phương trình vô nghiệm.
Với \(\left\{{}\begin{matrix}m\ne-1\\m\ne\dfrac{4}{3}\end{matrix}\right.\) hệ có nghiệm duy nhất là: \(\left(x;y\right)=\left(\dfrac{3-m}{3m-4};\dfrac{m-2}{3m-4}\right)\).
sử dụng phương pháp thế nha bn , rút 1 ẩn từ phương trình đơn giản rồi thế vào phương trình còn lại rồi giải bình thường . tập làm đi cho quen nha bn :)
a/ \(\left\{{}\begin{matrix}\left(2x+y\right)^2-5\left(4x^2-y^2\right)+6\left(2x-y\right)^2=0\\2x+y+\dfrac{1}{2x-y}=3\end{matrix}\right.\)
Đặt \(\left\{{}\begin{matrix}2x+y=a\\2x-y=b\end{matrix}\right.\)
\(\Rightarrow\left\{{}\begin{matrix}a^2-5ab+6b^2=0\left(1\right)\\a+\dfrac{1}{b}=3\left(2\right)\end{matrix}\right.\)
\(\Rightarrow\left(1\right)\Leftrightarrow\left(2b-a\right)\left(3b-a\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}a=2b\\a=3b\end{matrix}\right.\)
Thế vô (2) làm tiếp sẽ ra
b/ \(\left\{{}\begin{matrix}2x^3+y\left(x+1\right)=4x^2\left(1\right)\\5x^4-4x^6=y^2\left(2\right)\end{matrix}\right.\)
\(\Rightarrow\left(1\right)\Leftrightarrow2x^3+y=4x^2-xy\)
\(\Leftrightarrow4x^6+4x^3y+y^2=16x^4-8x^3y+x^2y^2\)
\(\Leftrightarrow4x^6+4x^3y+5x^4-4x^6=16x^4-8x^3y+x^2y^2\)
\(\Leftrightarrow11x^4-12x^3y+x^2y^2=0\)
\(\Leftrightarrow x^2\left(11x^2-12xy+y^2\right)=0\)
\(\Leftrightarrow\left\{{}\begin{matrix}x=0\\11x^2-12xy+y^2=0\end{matrix}\right.\)
Tới đây thì đơn giản rồi làm nốt nhé.
a)\(\left\{{}\begin{matrix}2x-3y=1\\x+2y=3\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}2\cdot\left(3-2y\right)-3y=1\\x=3-2y\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}6-7y=1\\x=3-2y\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}y=\dfrac{5}{7}\\x=3-2\cdot\dfrac{5}{7}\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}y=\dfrac{5}{7}\\x=\dfrac{11}{7}\end{matrix}\right.\)b) Biểu diễn lại một biến theo một biến như pt trên rồi giải, ta có :
\(\left\{{}\begin{matrix}2x+4y=5\\4x-2y=2\end{matrix}\right.\Rightarrow\left\{{}\begin{matrix}x=\dfrac{9}{10}\\y=\dfrac{4}{5}\end{matrix}\right.\)
c) Cách làm tương tự như pt a ta có :
\(\left\{{}\begin{matrix}\dfrac{2}{3}x+\dfrac{1}{2}y=\dfrac{2}{3}\\\dfrac{1}{3}x-\dfrac{3}{4}y=\dfrac{1}{2}\end{matrix}\right.\Rightarrow\left\{{}\begin{matrix}x=\dfrac{9}{8}\\y=-\dfrac{1}{6}\end{matrix}\right.\)
d) Tương tự ta có :
\(\left\{{}\begin{matrix}0,3x-0,2y=0,5\\0,5x+0,4y=1,2\end{matrix}\right.\Rightarrow\left\{{}\begin{matrix}x=2\\y=\dfrac{1}{2}\end{matrix}\right.\)
a) \(\left\{{}\begin{matrix}5x+3y=-7\\2x-4y=6\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}5x+3y=-7\\x-2y=3\end{matrix}\right.\)\(\Leftrightarrow\left\{{}\begin{matrix}5x+3y=-7\\x=3+2y\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}5.\left(3+2y\right)+3y=-7\\x=3+2y\end{matrix}\right.\)\(\Leftrightarrow\left\{{}\begin{matrix}13y=-22\\x=3+2y\end{matrix}\right.\)\(\Leftrightarrow\left\{{}\begin{matrix}y=\dfrac{-22}{13}\\x=3+2.\dfrac{-22}{13}\end{matrix}\right.\)\(\Leftrightarrow\left\{{}\begin{matrix}y=\dfrac{-22}{13}\\x=\dfrac{-5}{13}\end{matrix}\right.\)
Vậy hệ phương trình có nghiệm là: \(\left\{{}\begin{matrix}y=\dfrac{-22}{13}\\x=\dfrac{-5}{13}\end{matrix}\right.\).
b)\(\left\{{}\begin{matrix}7x+14y=17\\2x+4y=5\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}14x+28y=34\\14x+28y=35\end{matrix}\right.\) (vô nghiệm)
Vậy hệ phương trình vô nghiệm.
a,\(\left\{{}\begin{matrix}-7x+3y=-5\\5x-2y=4\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}-14x+6y=-10\\15x+6y=12\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}x=2\\5x-2y=4\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=2\\y=3\end{matrix}\right.\)
\(\Leftrightarrow2x-y=3\)
b,\(\left\{{}\begin{matrix}4x-2y=6\\-2x+y=-3\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}2x-y=3\\2x-y=3\end{matrix}\right.\Leftrightarrow2x-y=3\)
Vậy hệ phương trình có vô số nghiệm (x;y)= (a;2a-3), a tùy ý
c, \(\left\{{}\begin{matrix}-0,5x+0,4y=0,7\\0,3x-0,2y=0,4\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}-0,5x+0,4y=0,7\\0,6x-0,4y=0,8\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}x=15\\0,3x-0,2y=0,4\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=15\\y=20,5\end{matrix}\right.\)
d, \(\left\{{}\begin{matrix}\dfrac{3}{5}x-\dfrac{4}{3}y=\dfrac{2}{5}\\-\dfrac{2}{3}x-\dfrac{5}{9}y=\dfrac{4}{3}\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}\dfrac{3}{5}x-\dfrac{4}{3}y=\dfrac{2}{5}\\-\dfrac{3}{5}x-\dfrac{1}{2}y=\dfrac{6}{5}\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}-\dfrac{11}{6}y=\dfrac{8}{5}\\\dfrac{3}{5}x-\dfrac{4}{3}y=\dfrac{2}{5}\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=-\dfrac{14}{11}\\y=-\dfrac{48}{55}\end{matrix}\right.\)
1. \(\left\{{}\begin{matrix}x+y+\dfrac{1}{x}+\dfrac{1}{y}=5\\x^2+y^2+\dfrac{1}{x^2}+\dfrac{1}{y^2}=9\end{matrix}\right.\) ĐKXĐ : \(\left\{{}\begin{matrix}x>0\\y>0\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}x^2y+xy^2+x+y=5xy\\x^4y^2+x^2y^4+x^2+y^2=9x^2y^2\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}x^4y^2+x^2y^4+x^2+y^2=25x^2y^2\\x^4y^2+x^2y^4+x^2+y^2=9x^2y^2\end{matrix}\right.\)\(\Leftrightarrow0=16x^2y^2\)
\(\Rightarrow\) phương trình vô nghiệm
\(\Leftrightarrow\left\{{}\begin{matrix}x=\frac{-y+2}{2}\\y=m\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}x=\frac{-m+2}{2}\\y=m\end{matrix}\right.\)
Hệ phương trình đã cho luôn có nghiệm duy nhất (như trên) với mọi m