K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

23 tháng 11 2021

\(1,\\ a,ĐK:m\ne1\\ \Delta=49+48\left(m-1\right)=48m+1\\ \text{PT vô nghiệm }\Leftrightarrow48m+1< 0\Leftrightarrow m< -\dfrac{1}{48}\\ \text{PT có nghiệm kép }\Leftrightarrow48m+1=0\Leftrightarrow m=-\dfrac{1}{48}\\ \text{PT có 2 nghiệm phân biệt }\Leftrightarrow48m+1>0\Leftrightarrow m>-\dfrac{1}{48};m\ne1\)

\(b,\Delta=4\left(m-1\right)^2+4\left(2m+1\right)=4m^2+8>0,\forall m\\ \text{Vậy PT có 2 nghiệm phân biệt với mọi m}\\ 2,\\ \text{PT có 2 nghiệm phân biệt }\)

\(\Leftrightarrow\Delta=4\left(m+1\right)^2-4\left(m^2-1\right)>0\\ \Leftrightarrow4m^2+8m+4-4m^2+4>0\\ \Leftrightarrow8m+8>0\\ \Leftrightarrow m>-1\)

3 tháng 11 2018

A. \(x^2-2mx+m^2-2m+1=0\)

Ta có: Δ = \(b^2-4ac\)

= \(\left(-2m\right)^2-4.\left(m^2-2m+1\right)\)

= \(4m^2-4m^2+8m-4\)

= 8m - 4

+Nếu Δ > 0

⇔ 8m - 4 > 0

⇔ m > \(\dfrac{1}{2}\)

Phương trình có hai nghiệm phân biệt:

\(x_1=\dfrac{-b+\sqrt{\Delta}}{2a}=\dfrac{2m+\sqrt{8m-4}}{2}=m+\sqrt{2m-1}\)

\(x_2=\dfrac{-b-\sqrt{\Delta}}{2a}=\dfrac{2m-\sqrt{8m-4}}{2}=m-\sqrt{2m-1}\)

+Nếu Δ =0

⇔ 8m - 4 = 0

⇔ m = \(\dfrac{1}{2}\)

phương trình có nghiệm kép:

\(x_1=x_2=\dfrac{-b}{2a}=\dfrac{2m}{2}=m\) = \(\dfrac{1}{2}\)

+Nếu Δ < 0

⇔ 8m - 4 < 0

⇔ m< \(\dfrac{1}{2}\)

Phương trình vô nghiệm

B. \(x^2+\left(m-1\right)x-2m^2+m=0\)

Ta có: Δ = \(b^2-4ac\)

= \(\left(m-1\right)^2-4\left(-2m^2+m\right)\)

= \(m^2-2m+1+8m^2-4m\)

= \(9m^2-6m+1\)

+Nếu Δ > 0

\(9m^2-6m+1\) > 0

⇔ m ≠ \(\dfrac{1}{3}\)

Phương trình có hai nghiệm phân biệt:

\(x_1=\dfrac{-b+\sqrt{\Delta}}{2a}=\dfrac{-m+1+\sqrt{9m^2-6m+1}}{2}\)

\(x_2=\dfrac{-b-\sqrt{\Delta}}{2a}=\dfrac{-m+1-\sqrt{9m^2-6m+1}}{2}\)

+Nếu Δ = 0

\(9m^2-6m+1=0\)

⇔ m = \(\dfrac{1}{3}\)

Phương trình có nghiệm kép:

\(x_1=x_2=\dfrac{-b}{2a}=\dfrac{-\left(m-1\right)}{2}=\dfrac{-\left(\dfrac{1}{3}-1\right)}{2}=\dfrac{1}{3}\)

+Nếu Δ < 0

\(9m^2-6m+1< 0\)

⇔ m ∈ ∅

22 tháng 8 2019

(2m + 1)x – 2m = 3x – 2

⇔ (2m + 1)x – 3x = 2m – 2

⇔ (2m + 1 – 3).x = 2m – 2

⇔ (2m – 2).x = 2m – 2 (3)

     + Xét 2m – 2 ≠ 0 ⇔ m ≠ 1, pt (3) có nghiệm duy nhất Giải bài 2 trang 62 sgk Đại số 10 | Để học tốt Toán 10

     + Xét 2m – 2 = 0 ⇔ m = 1, pt (3) ⇔ 0.x = 0, phương trình có vô số nghiệm.

Kết luận :

+ Với m = 1, phương trình có vô số nghiệm

+ Với m ≠ 1, phương trình có nghiệm duy nhất x = 1.

23 tháng 1 2017

m = 0 phương trình trở thành

    -x - 2 = 0 ⇒ x = -2

    m ≠ 0 phương trình đã cho là phương trình bậc hai, có Δ = 4m + 1

    Với m < -1/4 phương trình vô nghiệm;

    Với m ≥ -1/4 nghiệm của phương trình là

Giải sách bài tập Toán 10 | Giải sbt Toán 10

26 tháng 11 2021

Với \(m=-1\Leftrightarrow4x+1=0\Leftrightarrow x=-\dfrac{1}{4}\)

Với \(m=1\Leftrightarrow1=0\Leftrightarrow x\in\varnothing\)

Với \(m\ne\pm1\)

\(\Delta=4\left(m-1\right)^2-4\left(m^2+1\right)\\ \Delta=4m^2-8m+4-4m^2-4\\ \Delta=-8m\)

PT vô nghiệm \(\Leftrightarrow-8m< 0\Leftrightarrow m>0\)

PT có nghiệm kép \(\Leftrightarrow-8m=0\Leftrightarrow m=0\)

Khi đó \(x=\dfrac{2\left(m-1\right)}{2\left(m^2-1\right)}=\dfrac{1}{m+1}\)

PT có 2 nghiệm phân biệt \(\Leftrightarrow-8m>0\Leftrightarrow m< 0\)

Khi đó \(\left[{}\begin{matrix}x_1=\dfrac{2\left(m-1\right)-\sqrt{-8m}}{2\left(m^2-1\right)}\\x_2=\dfrac{2\left(m-1\right)+\sqrt{-8m}}{2\left(m^2+1\right)}\end{matrix}\right.\)