Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a)
\(m^2x=m\left(x+2\right)-2\)
\(\Leftrightarrow m^2x=mx+2m-2\)
\(\Leftrightarrow m^2x-mx=2m-2\)
\(\Leftrightarrow x\left(m^2-m\right)=2\left(m-1\right)\) (1)
+) Nếu \(m^2-m\ne0\Leftrightarrow m\ne0;1\)
Phương trình có 1 nghiệm duy nhất \(x=\frac{2\left(m-1\right)}{m^2-m}=\frac{2\left(m-1\right)}{m\left(m-1\right)}=\frac{2}{m}\)
+) Nếu \(m=0\)
Phương trình (1) \(\Leftrightarrow0x=-2\) ( vô lí )
\(\Rightarrow\) phương trình vô nghiệm
+) Nếu \(m=1\)
Phương trình (1) \(\Leftrightarrow0x=0\)
\(\Rightarrow\) phương trình có vô số nghiệm
Vậy khi m khác 0 ; 1 thì phương trình có 1 nghiệm duy nhất \(x=\frac{2}{m}\)
khi m = 0 thì phương trình vô nghiệm
khi m = 1 thì phương trình có nghiệm đúng với mọi x
b)
\(m^2x+2=4x+m\)
\(\Leftrightarrow m^2x-4x=m-2\)
\(\Leftrightarrow x\left(m^2-4\right)=m-2\)(2)
+) Nếu \(m^2-4\ne0\Leftrightarrow m\ne\pm2\)
Phương trình có 1 nghiệm duy nhất \(x=\frac{m-2}{m^2-4}=\frac{m-2}{\left(m-2\right)\left(m+2\right)}=\frac{1}{m+2}\)
+) Nếu \(m=2\)
Phương trình (2) \(\Leftrightarrow0x=0\)
\(\Rightarrow\) phương trình có nghiệm đúng với mọi x
+) Nếu \(m=-2\)
Phương trình (2) \(\Leftrightarrow0x=-4\) ( vô lí )
\(\Rightarrow\) phương trình vô nghiệm
Vậy .....
a: =>x(a^2+b^2+2ab)=a+6
=>x(a+b)^2=a+6
TH1: a=-b và a=-6
=>PT có vô số nghiệm
TH2: a=-b và a<>-6
=>PTVN
TH3: a<>-b
=>PT có nghiệm duy nhất là x=(a+6)/(a+b)^2
b: TH1: a=1
=>PT có vô số nghiệm
TH2: a<>1
=>PT có nghiệm duy nhất là \(x=\dfrac{-3\left(a-1\right)}{a-1}=-3\)
d: =>x(m^2-1)=2m-2
=>x(m-1)(m+1)=2(m-1)
TH1: m=1
=>PT có vô số nghiệm
TH2: m=-1
=>PTVN
TH3: m<>1; m<>-1
=>PT có nghiệm duy nhất là x=2/(m+1)
a)\(\Leftrightarrow-79x+7mx-5m+14=0\)
\(\Leftrightarrow\left(7m-79\right)x-5m+14=0\)
\(\Leftrightarrow x=\dfrac{5m-14}{7m-79}\)\(\left(m\ne\dfrac{79}{7}\right)\)
Vậy để pt có nghiệm thì \(m\ne\dfrac{79}{7}\)
b)\(\Leftrightarrow\left(2m-4\right)x+8m+4-m^2+4=0\)
\(\Leftrightarrow x=\dfrac{m^2-8-8m}{2m-4}\)\(\left(m\ne2\right)\)
Vậy pt có nghiệm \(x=\dfrac{m^2-8-8m}{2m-4}\Leftrightarrow m\ne2\)
c: (3x-2)(x+3)<0
=>x+3>0 và 3x-2<0
=>-3<x<2/3
d: \(\dfrac{x-2}{x-10}>=0\)
=>x-10>0 hoặc x-2<=0
=>x>10 hoặc x<=2
e: \(3x^2+7x+4< 0\)
\(\Leftrightarrow3x^2+3x+4x+4< 0\)
=>(x+1)(3x+4)<0
=>-4/3<x<-1
\(Bài1\):
a) \(\left(-2\right)^3+\left(-2\right)^2+m.\left(-2\right)-4=0\)
\(\Leftrightarrow-8+4-2m-4=0\)
\(\Leftrightarrow2m=-8\)
\(\Leftrightarrow m=-4\)
\(Vậy...\)
b) \(x^3+x^2-4x-4=0\)
\(\Leftrightarrow x^2\left(x+1\right)-4\left(x+1\right)=0\)
\(\Leftrightarrow\left(x+1\right)\left(x^2-4\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x+1=0\\x+2=0\\x-2=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=-1\\x=-2\\x=2\end{matrix}\right.\)
Vậy...
a: Để phương trình vô nghiệm thì m-2=0
hay m=2
Để phương trình có nghiệm duy nhất thì m-2<>0
hay m<>2
b: \(\Leftrightarrow2mx-x=5+2=7\)
=>x(2m-1)=7
Để phương trình vô nghiệm thì 2m-1=0
hay m=1/2
Để phương trình có nghiệm duy nhất thì 2m-1<>0
hay m<>1/2
c: \(\Leftrightarrow x\left(m^2-4\right)=m-2\)
Để phương trình có nghiệm duy nhất thì (m-2)(m+2)<>0
hay \(m\notin\left\{2;-2\right\}\)
Để phương trình có vô số nghiệm thì m-2=0
hay m=2
để phương trình vô nghiệm thì m+2=0
hay m=-2
d: \(\Leftrightarrow x\left(m^2-1\right)=0\)
Để phương trình có vô số nghiệm thì (m-1)(m+1)=0
hay \(m\in\left\{1;-1\right\}\)
Để phương trình có nghiệm duy nhất thì (m-1)(m+1)<>0
hay \(m\notin\left\{1;-1\right\}\)