Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a:dk: x>0;x khac 1; x khac 2
A=mở ngoăc vuông (2+căn x)^2-(2-căn x)^2+4x tất ca trên (4-x) đống ngăc vuông nhân voi (2căn x -x)/(căn x - x)
rút gon ngoăc vuông ta co (8căn x +4x)/(4-x) roi nhân vơi (2 căn x -x)/(căn x -3) rôi rút gon thu dươc 4x/(căn x -3)
b:4x/(Cx -3) > 0 * vi x >0 nen 4x > 0. vay muôn A>0 thi Cx-3 > 0 tương đương Cx>3 tương đương x>9
c; não quá tải. đợij lần sau
c}biến đổi thành \(x\left(m-1\right)=\left(m-1\right)\left(m+1\right)\)
với m=1 thì pt trở thành 0x=0 vậy pt đã cho có vô số nghiệm
với m\(\ne\)1 thì pt có nghiệm x=m+1
vậy ............
1.
\(VT=\sqrt{x-3}+\sqrt{5-x}\le\sqrt{2\left(x-3+5-x\right)}=2\)
\(VP=y^2+2\sqrt{2013}y+2013+2=\left(y+\sqrt{2013}\right)^2+2\ge2\)
\(\Rightarrow VT\le VP\)
Dấu "=" xảy ra khi và chỉ khi:
\(\left\{{}\begin{matrix}x-3=5-x\\y+\sqrt{2013}=0\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}x=4\\y=-\sqrt{2013}\end{matrix}\right.\)
2.
\(\frac{1}{x}+\frac{1}{y}=\frac{1}{2014}\Rightarrow\frac{xy}{x+y}=2014\)
\(P=\frac{\sqrt{x+y}}{\sqrt{x-\frac{xy}{x+y}}+\sqrt{y-\frac{xy}{x+y}}}=\frac{x+y}{\sqrt{x^2}+\sqrt{y^2}}=\frac{x+y}{x+y}=1\)
3.
\(P=\sqrt{13+30\sqrt{2+\sqrt{\left(2\sqrt{2}+1\right)^2}}}\)
\(=\sqrt{13+30\sqrt{2+2\sqrt{2}+1}}=\sqrt{13+30\sqrt{3+2\sqrt{2}}}\)
\(=\sqrt{13+30\sqrt{\left(\sqrt{2}+1\right)^2}}=\sqrt{13+30\left(\sqrt{2}+1\right)}\)
\(=\sqrt{43+30\sqrt{2}}=\sqrt{\left(5+3\sqrt{2}\right)^2}=5+3\sqrt{2}\)
4.
\(\left\{{}\begin{matrix}mx+y=2\\2x-y=1\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}\left(m+2\right)x=3\\y=2x-1\end{matrix}\right.\)
- Với \(m=-2\) hệ đã cho vô nghiệm
- Với \(m\ne-2\) hệ có nghiệm duy nhất:
\(\left\{{}\begin{matrix}x=\frac{3}{m+2}\\y=2x-1=\frac{6}{m+2}-1=\frac{4-m}{m+2}\end{matrix}\right.\)
5.
Giả sử hệ đã cho có nghiệm
\(\Leftrightarrow\left\{{}\begin{matrix}mx=1-y\\my=2-x\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}m=\frac{1-y}{x}\\m=\frac{2-x}{y}\end{matrix}\right.\)
\(\Rightarrow\frac{1-y}{x}=\frac{2-x}{y}\Leftrightarrow y-y^2=2x-x^2\)
\(\Leftrightarrow x^2-y^2-2x+y=0\)
Đây là hệ thức liên hệ 2 nghiệm ko phụ thuộc m
\(x\ge m\)
\(\sqrt{x-m+2\sqrt{m\left(x-m\right)}+m}+\sqrt{x-m-2\sqrt{m\left(x-m\right)}+m}\le2\)
\(\Leftrightarrow\sqrt{\left(\sqrt{x-m}+\sqrt{m}\right)^2}+\sqrt{\left(\sqrt{x-m}-\sqrt{m}\right)^2}\le2\)
\(\Leftrightarrow\sqrt{x-m}+\sqrt{m}+\left|\sqrt{x-m}-\sqrt{m}\right|\le2\)
- Nếu \(\sqrt{x-m}\ge\sqrt{m}\Leftrightarrow x\ge2m\) BPT trở thành:
\(2\sqrt{x-m}\le2\Leftrightarrow x\le m+1\Rightarrow2m\le x\le m+1\)
\(\Rightarrow m+1\ge2m\Rightarrow m\le1\)
- Nếu \(\sqrt{x-m}< \sqrt{m}\Leftrightarrow m\le x< 2m\) BPT trở thành:
\(2\sqrt{m}\le2\Rightarrow m\le1\)
Vậy nếu \(0< m\le1\) thì BPT có nghiệm \(m\le x\le m+1\)