K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

30 tháng 9 2019

Điều kiện của bất phương trình là x ≥ 0

    Nếu m ≤ 1 thì m - 1 ≤ 0, bất phương trình đã cho nghiệm đúng với mọi x ≥ 0

    Nếu m > 1 thì m – 1 > 0, bất phương trình đã cho tương đương với √x ≤ 0 ⇔ x = 0

    Vậy: Nếu m ≤ 1 thì tập nghiệm của bất phương trình là [0; +∞)

     Nếu m > 1 thì tập nghiệm của bất phương trình là {0}

13 tháng 4 2017

Điều kiện xác định \(x\ge0\).
Do \(\sqrt{x}\ge0\) với mọi \(x\ge0\) nên BPT có nghiệm khi:
\(m-1\le0\Leftrightarrow m\le1\).
vậy ta có các trường hợp sau:
- Nếu \(m\le1\) bất phương trình nghiệm đúng với mọi \(x\ge0\).
- Nếu \(m>1\) bất phương trình vô nghiệm.

7 tháng 4 2017

\(\Leftrightarrow\left(m-2\right)x>m^2-4=\left(m-2\right)\left(m+2\right)\)

nếu m =2 => 0.x > 0.4 => vô nghiệm

Nếu m> 2 => m-2 >0 chia hai vế cho m-2<0

\(\Rightarrow x>m+2\)

Nếu m<2 => m-2 <0 chia hai cho m-2 <0

\(\Rightarrow x< m+2\)

Kết luận:

Nếu m =2 Phương trình vô nghiêm

nếu m> 2 có nghiệm: \(x>m+2\)

nếu m<2 có nghiệm: \(x< m+2\)

25 tháng 2 2016

\(\left(m-1\right)x^2-2mx+3m-2>0\) (1)

- Nếu \(m=1\)   thì (1) có dạng \(-2x+1>0\)    nên có nghiệm \(x<\frac{1}{2}\)

- Nếu \(m\ne1\)   thì (1) là bất phương trình bậc 2 với \(a=m-1\)  và biệt thức \(\Delta'=-2m+5m-2\) 

Trong trường hợp \(\Delta'\ge0\)

ta kí hiệu 

\(x_1:=\frac{m-\sqrt{\Delta'}}{m-1}\)    ; \(x_2:=\frac{m+\sqrt{\Delta'}}{m-1}\)     \(d:=x_2-x_1=\frac{2\sqrt{\Delta'}}{m-1}\)

Lập bảng xét dấu ta được

+ Nếu \(m\le\frac{1}{2}\)   thì \(a<0\)    ; \(\Delta'\le0\)

nên (1) vô nghiệm

+ Nếu \(\frac{1}{2}\) <m< 1 thi a<0; \(\Delta'>0\)

\(d\ge0\) nên (1) \(\Leftrightarrow\) x<\(x_1\)  hoặc \(x_2\)<x

+ Nếu m>2 thì a>0; \(\Delta'<0\)

nên (1) có tập nghiệm T(1)=R.

Ta có kết luận :

* Khi \(m\le\frac{1}{2}\) thì (1) vô nghiệm

* Khi \(\frac{1}{2}\) <m<1 thì (1) có nghiệm

\(\frac{m+\sqrt{-2m^2+5m-2}}{m-1}\) <x<\(\frac{m-\sqrt{-2m^2+5m-2}}{m-1}\)

* Khi m=1 thì (1) có nghiệm \(x<\frac{1}{2}\)

* Khi 1<m\(\le\) 2 thì (1) có tập nghiệm

T(1) = \(\left(-\infty;\frac{m-\sqrt{-2m^2+5m-2}}{m-1}\right)\cup\left(\frac{m+\sqrt{-2m^2+5m-2}}{m-1}\right);+\infty\)

* Khi m>2 thì (1) có nghiệm là mọi x\(\in R\)

14 tháng 4 2017

Lời giải

\(\Leftrightarrow\left\{{}\begin{matrix}x\ge m\left(1\right)\\\left(3x+2m\right)^2=\left(x-m\right)^2\left(2\right)\end{matrix}\right.\)

(2)\(\Leftrightarrow9x^2+12xm+4m^2=x^2-2mx+m^2\)

\(\Leftrightarrow8x^2+14mx+3m^2=0\)

\(\Delta'_x=49m^2-24m^2=25m^2\ge0\forall m\) => (2) luôn có nghiệm với mợi m

\(x=\dfrac{5\left|m\right|-7m}{8}\) (3)

so sánh (3) với (1)

\(\dfrac{5\left|m\right|-7m}{8}\ge m\Leftrightarrow\left|m\right|\ge3m\)(4)

m <0 hiển nhiên đúng

xét khi m\(\ge\)0

\(\left(4\right)\Leftrightarrow\left\{{}\begin{matrix}m\ge0\\m^2\ge9m^2\end{matrix}\right.\)\(\Rightarrow m\le0\)\(\Leftrightarrow m=0\)

Biện luận

(I)với m <0 có hai nghiệm

\(\left\{{}\begin{matrix}x_1=\dfrac{-3m}{2}\\x_2=\dfrac{-m}{4}\end{matrix}\right.\)

(II) với m= 0 có nghiệm kép x=0

(III) m>0 vô nghiệm

 

 

3 tháng 5 2017

b) \(\left|2x+m\right|=\left|x-2m+2\right|\Leftrightarrow\left[{}\begin{matrix}2x+m=x-2m+2\left(1\right)\\2x+m=-\left(x-2m+2\right)\left(2\right)\end{matrix}\right.\)
Xét (1): \(2x+m=x-2m+2\Leftrightarrow x=-3m+2\).
Xét (2): \(2x+m=-\left(x-2m+2\right)\Leftrightarrow x=\dfrac{m-2}{3}\)
Biện luận:
Với mọi m phương trình đều có hai nghiệm:
\(x=-3m+2;x=\dfrac{m-2}{3}\).

2 tháng 4 2017

a) ⇔ (m – 3)x = 2m + 1.

  • Nếu m ≠ 3 phương trình có nghiệm duy nhất x = .
  • Nếu m = 3 phương trình trở thành 0x = 7. Vô nghiệm.

b) ⇔ (m2 – 4)x = 3m – 6.

  • Nếu m2 – 4 ≠ 0 ⇔ m ≠ ± 2, có nghiệm x = .
  • Nếu m = 2, phương trình trở thành 0x = 0, mọi x ∈ R đều nghiệm đúng phương trình.
  • Nếu m = -2, phương trình trở thành 0x = -12. Vô nghiệm.

c) ⇔ 2(m – 1)x = 2(m-1).

  • Nếu m ≠ 1 có nghiệm duy nhất x = 1.
  • Nếu m = 1 mọi x ∈ R đều là nghiệm của phương trình.


25 tháng 2 2016

\(x^2-\left(3m-2\right)x+2m\left(m-2\right)<0\) (1)

Tam thức bậc hai ở (1) luôn có hai nghiệm \(x_1=2m\)

và \(x_2=m-2\) với mọi \(m\in R\) Từ đó ta có 

- Khi 2m<m-2 hay m<-2 thì (1) có nghiệm 2m<x<m-2

- Khi 2m=m-2 hay m=-2 thì (1) vô nghiệm 

- Khi 2m>m-2 hay m>-2 thì (1) có nghiệm m-2<x<2m