K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

17 tháng 3 2022

Gọi số sp cần sx là x(sp) x>0

Thời gian sx xong theo kế hoạch : \(\dfrac{x}{30}\)(h)

Thời gian sx xong theo thực tế : \(\dfrac{x}{27}\)(h)

Pt

\(\dfrac{x}{27}\)-\(\dfrac{x}{30}\)=\(\dfrac{5}{6}\)

Giải ra được x=315

Vậy....

 

 

7 tháng 9 2021

Ta có :

 \(S_{ABC}=\frac{1}{2}.AH.BC=\frac{10.6}{2}=30\)( đvdt )

7 tháng 9 2021

\(S_{ABC}=\frac{1}{2}\cdot AH\cdot BC=\frac{1}{2}\cdot6\cdot10=30\)

30 tháng 6 2016

300km

30 tháng 6 2016

Bạn ơi phương trình là gì hả bạn.??

12 tháng 8 2021

Bài 4 : 

\(M=\left(2x-3y\right)^2-\left(3y-2\right)\left(3y+2\right)-\left(1-2x\right)^2+4x\left(3y-1\right)\)

\(=\left(2x-3y-1+2x\right)\left(2x-3y+1-2x\right)-9y^2+4+12xy-4x\)

\(=\left(4x-3y-1\right)\left(1-3y\right)-9y^2+4+12xy-4x\)

\(=4x-12xy-3y+9y^2-1+3y-9y^2+4+12xy-4x=3\)

Vậy biểu thức ko phụ thuộc giá trị biến x 

12 tháng 8 2021

Bài 2 : 

a, \(\left(a-3b\right)^2=a^2-6ab+9b^2\)

b, \(x^2-16y^4=\left(x-4y^2\right)\left(x+4y^2\right)\)

c, \(25a^2-\frac{1}{4}b^2=\left(5a-\frac{1}{2}b\right)\left(5a+\frac{1}{2}b\right)\)

Bài 3 : 

a, \(9x^2-6x+1=\left(3x-1\right)^2\)

b, \(\left(2x+3y\right)^2+2\left(2x+3y\right)+1=\left(2x+3y+1\right)^2\)

c, \(4\left(2x-y\right)^2-8x+4y+1=\left(4x-2y\right)^2-2\left(4x-2y\right)+1=\left(4x-2y-1\right)^2\)

25 tháng 10 2017

mai mk giúp cho. hôm nay mik bận làm đề cương rồi

okokok

11 tháng 2 2017

Kẽ BH vuông góc CD=>DH+HC=7=>HC=7-3=4 xét tam giác BHC có:

BHC+HCB+CBH=180o( tổng ba góc trong 1 tam giác)

CBH=180-90-45=45o

=> tam giác BHC là tam giác vuông cân

=> HC=BH=4cm

SABCD=SABHD+SBHC=\(3.4+\left(\frac{4.4}{2}\right)=20cm^2\)

Câu 4: 

a: ĐKXĐ: \(x\notin\left\{0;-5\right\}\)

b: \(A=\dfrac{x^2+2x}{2\left(x+5\right)}+\dfrac{x-5}{x}+\dfrac{50-5x}{2x\left(x+5\right)}\)

\(=\dfrac{x^3+2x^2}{2x\left(x+5\right)}+\dfrac{2\left(x^2-25\right)}{2x\left(x+5\right)}+\dfrac{50-5x}{2x\left(x+5\right)}\)

\(=\dfrac{x^3+2x^2+2x^2-50+50-5x}{2x\left(x+5\right)}\)

\(=\dfrac{x^3+4x^2-5x}{2x\left(x+5\right)}=\dfrac{x\left(x^2+4x-5\right)}{2x\left(x+5\right)}\)

\(=\dfrac{x\left(x+5\right)\left(x-1\right)}{2x\left(x+5\right)}=\dfrac{x-1}{2}\)

c: Để A=-3 thì x-1=-6

hay x=-5(loại)

14 tháng 9 2017

Điều kiện:

\(x-1\ne0\Rightarrow x\ne1\)

\(x^3+x\ne0\Leftrightarrow x\ne0\)

4 tháng 3 2017

Ta có: \(\left(x-1\right)^2\ge0\) \(\Leftrightarrow x^2-2x+1\ge0\)\(\Leftrightarrow x^2+1\ge2x\).\(\left(1\right)\)

\(\left(y-2\right)^2\ge0\Leftrightarrow y^2-4y+4\ge0\Leftrightarrow x^2+4\ge4y\).\(\left(2\right)\)

\(\left(z^2-9\right)\ge0\Leftrightarrow z^2-6z+9\ge0\Leftrightarrow z^2+9\ge6z\).\(\left(3\right)\)

Từ \(\left(1\right),\left(2\right)\)\(\left(3\right)\) nhân vế theo vế ta được:

\(\left(x^2+1\right).\left(y^2+4\right).\left(z^2+9\right)\ge48xyz\)

mà theo đề ta có:\(\left(x^2+1\right).\left(y^2+4\right).\left(z^2+9\right)=48xyz\)

nên \(\left\{{}\begin{matrix}x^2+1=2x\\y^2+4=4y\\z^2+9=6z\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}x=1\\y=2\\z=3\end{matrix}\right.\)

Thay \(x=1;y=2;z=3\)vào biểu thức A ta được:

\(A=\dfrac{x^3+y^3+z^3}{\left(x+y+z\right)^2}=\dfrac{1+8+27}{\left(1+2+3\right)^2}=1\)

Vậy giá trị của biểu thức \(A=\dfrac{x^3+y^3+z^3}{\left(x+y+z\right)^2}\)là 1.