Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có:
2x2 + 5 ≤ 2x – 1
⇔ 2x2 + 5 + 1 – 2x ≤ 2x – 1 + 1 – 2x (Cộng cả hai vế của BPT với 1 – 2x).
⇔ 2x2 – 2x + 6 ≤ 0.
Vậy hai BPT đã cho tương đương: 2x2 + 5 ≤ 2x – 1 ⇔ 2x2 – 2x + 6 ≤ 0.
a) Tương đương. vì nhân hai vế bất phương trình thứ nhất với -1 và đổi chiều bất phương trình thì được bất phương trình thứ 2.
b) Chuyển vế các hạng tử vế phải và đổi dấu ở bất phương trình thứ nhất thì được bất phương trình thứ tương đương.
c) Tương đương. Vì cộng hai vế bất phương trình thứ nhất với với mọi x ta được bất phương trình thứ 3.
d) Điều kiện xác định bất phương trình thứ nhất: D ={x ≥ 1}.
2x + 1 > 0 ∀x ∈ D. Nhân hai vế bất phương trình thứ hai. Vậy bất phương trình tương đương.
- Điều kiện cần:
Phương trình \(3x-1\) có nghiệm là \(x=\dfrac{1}{3}\).
Điều kiện xác định của \(\dfrac{3mx+1}{x-2}+2m-1=0\) là \(x\ne2\).
Để cặp phương trình tương đương thì phương trình \(\dfrac{3mx+1}{x-2}+2m-1=0\) có nghiệm duy nhất là \(x=\dfrac{1}{3}\).
Từ đó suy ra: \(\dfrac{3m.\dfrac{1}{3}+1}{\dfrac{1}{3}-2}+2m-1=0\)\(\Leftrightarrow-\dfrac{3}{5}\left(m+1\right)+2m-1=0\)\(\Leftrightarrow\dfrac{7}{5}m-\dfrac{8}{5}=0\)\(\Leftrightarrow m=\dfrac{8}{7}\).
- Điều kiện đủ
Thay \(m=\dfrac{8}{7}\) vào phương trình \(\dfrac{3mx+1}{x-2}+2m-1=0\) ta được:
\(\dfrac{3.\dfrac{8}{7}x+1}{x-2}+2.\dfrac{8}{7}-1=0\)\(\Leftrightarrow\dfrac{24}{7}x+1+\dfrac{9}{7}\left(x-2\right)=0\)\(\dfrac{33}{7}x-\dfrac{11}{7}\)\(\Leftrightarrow x=\dfrac{1}{3}\).
Vậy \(m=\dfrac{8}{7}\) thì cặp phương trình tương đương.
\(x^2+3x-4=0\Leftrightarrow\left[{}\begin{matrix}x=1\\x=-4\end{matrix}\right.\).
Để cặp phương trình tương đương thì \(mx^2-4x-m+4=0\) có hai nghiệm là \(x=1\) và \(x=-4\) .
Với \(x=1\) ta có: \(m.1^2-4.1-m+4=0\)\(\Leftrightarrow0=0\).
Vậy phương trình \(mx^2-4x-m+4=0\) luôn có một nghiệm \(x=1\).
Thay \(x=-4\) ta có: \(m.\left(-4\right)^2-4.\left(-4\right)-m+4=0\)\(\Leftrightarrow m=-\dfrac{4}{3}\).
Vậy \(m=-\dfrac{4}{3}\) thì cặp phương trình tương đương.
3x - 2(y - x + 1) > 0 ⇔ 3x - 2y + 2x - 2 > 0 ⇔ 5x - 2y - 2 > 0
Đáp án là B.
Đáp án B.
Ta thấy bất phương trình ở đề bài và bất phương trình (x - 1 ) 2 (x + 5) ≥ 0 cùng có tập nghiệm là: [-5; + ∞ ). Do đó, hai bất phương trình này tương đương với nhau
Nếu nhân hai vế của 1/x ≤ 1 với x, ta được bất phương trình mới x ≥ 1; bất phương trình này không tương đương với bất phương trình đã cho vì đã làm mất đi tất cả các nghiệm âm của nó.
Ghi nhớ: Không được nhân hay chia hai vế của một bất phương trình với một biểu thức chứa ẩn mà không biết dấu của biểu thức đó.
Đáp án c) nhé em.
x-2<=0 => x<=2
x2(x-2)<=0 => x=0 hoặc x-2<=0 => x<=2
Em mới học lớp 6 thôi ạ! Xin lỗi nhiều vì không giúp được!
Chọn D.
+) Xét bất phương trình x + 5 ≥ 0 ⇔ x ≥ -5
⇒ Tập nghiệm của bất phương trình là S = [-5;+ ∞ )
+) Xét bất phương trình (x - 1 ) 2 (x + 5) ≥ 0
Tập nghiệm của bất phương trình là S = [-5; + ∞ ).
+) Xét bất phương trình - x 2 (x + 5) ≤ 0
Tập nghiệm của bất phương trình là S = [-5; + ∞ ).
+) Xét bất phương trình
Tập nghiệm của bất phương trình là S = [-5; + ∞ ).
+) Xét bất phương trình
Tập nghiệm của bất phương trình là S = [5; + ∞ ).
Vậy bất phương trình
không tương đương với bất phương trình x + 5 ≥ 0.
Nhân hai vế của BPT: –4x + 1 > 0 với (–1) < 0 ta được BPT: 4x – 1 < 0 nên hai BPT đó tương đương.
Viết là –4x + 1 > 0 ⇔ 4x – 1 < 0.