K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

28 tháng 11 2021

a) Gọi D,E,F lần lượt là tiếp điểm của (I;r) với MN,PQ,RS; T,U,V lần lượt là tiếp điểm của (I;r) với BC,AC,AB

Xét đường tròn (I;r) có hai tiếp tuyến tại D và U cắt nhau tại M \(\Rightarrow MD=MU\)(tính chất hai tiếp tuyến cắt nhau)

Tương tự, ta cũng có: \(SU=SF;\)\(RF=RT;\)\(QT=QE;\)\(PE=PV;\)\(NV=ND\)

Mà \(P_1=AM+AN+MN=AM+AN+MD+ND=AM+AN+MU+NV\)(1)

\(P_2=BP+BQ+PQ=BP+BQ+PE+QE=BP+BQ+PV+QT\)(2)

\(P_3=CS+CR+SR=CS+CR+SF+RF=CS+SR+RT+SU\)(3)

Từ (1), (2) và (3) \(\Rightarrow P_1+P_2+P_3=AM+AN+MU+NV+BP+BQ+PV+QT+CS+CR+RT+SU\)

\(=AM+AN+BP+BQ+CS+CR+\left(MU+SU\right)+\left(RT+QT\right)+\left(PV+NV\right)\)

\(=AM+AN+BP+BQ+CS+CR+MS+RQ+NP\)

\(=\left(AM+CS+MS\right)+\left(AN+BP+NP\right)+\left(BQ+QR+RC\right)\)

\(=AC+AB+BC=P\)

Vậy đẳng thức được chứng minh

23 tháng 4 2020

54646

9 tháng 4 2020

Ta có R là bán kính đường tròn ngoại tiếp một tam giác đều cạnh a thì \(R=\frac{a\sqrt{3}}{a}\) (*)

Dựng 2 tam giác đều BDF và CDG về phía ngoài tam giác ABC, khi đó \(\widehat{BFD}=\widehat{BED}=60^0;\widehat{CGD}=\widehat{CED}=60^o\)

=> BDEF và CDEG là các tứ giác nội tiếp 

Nên R1;R2 lần lượt là bán kính của các đường tròn ngoại tiếp các tam giác đềuy BDF và CDG

Theo (*) ta có: \(R_1=\frac{BD\sqrt{3}}{3};R_2=\frac{CD\sqrt{3}}{3}\Rightarrow R_1R_2=\frac{BD\cdot CD}{3}\)

Mặt khác \(\left(BD+CD\right)^2\ge4\cdot BD\cdot CD\)

=> BD.CD\(\le\frac{\left(BD+CD\right)^2}{4}=\frac{BC^2}{4}=\frac{3R^2}{4}\Rightarrow R_1R_2\le\frac{R^2}{4}\)

Đẳng thức xảy ra khi và chỉ khi

BD=CD, nghĩa là R1;R2 đạt giá trị lớn nhất bằng \(\frac{R^2}{4}\) khi D là trung điểm BC

AH
Akai Haruma
Giáo viên
17 tháng 12 2020

Lời giải:

Giả sử các điểm có vị trí như hình vẽ. Trong đó: 

K là tâm đường tròn nội tiếp tam giác AMN

\(KL\perp AM; IU\perp AB (L\in AM; U\in AB)\)

Ký hiệu \(p_i\) là nửa chu vi tam giác \(i\)

\(A,K,I\) thẳng hàng vì cùng nằm trên đường phân giác trong góc A.

Dễ thấy:

\(\triangle AMN\sim \triangle ABC(g.g)\)\(\Rightarrow \frac{p_{AMN}}{p_{ABC}}=\frac{AM}{AB}\)

\(\triangle AMK\sim \triangle ABI(g.g)\)

\(\Rightarrow \frac{AM}{AB}=\frac{AK}{AI}\)

Mà \(LK\parallel IU \) nên theo Talet thì \(\frac{AK}{AI}=\frac{LK}{IU}=\frac{R_1}{R}\)

Do đó: \(\frac{p_{AMN}}{p_{ABC}}=\frac{R_1}{R}\)

Hoàn toàn tương tự ta có: \(\frac{p_{CPQ}}{p_{ABC}}=\frac{R_2}{R}; \frac{p_{BED}}{p_{ABC}}=\frac{R_3}{R}\). Do đó:

\(\frac{R_1+R_2+R_3}{R}=\frac{p_{AMN}+p_{CPQ}+p_{BED}}{p_{ABC}}=\frac{AM+AN+MN+BE+BD+ED+CP+CQ+PQ}{AB+AC+BC}\)

\(=\frac{(AM+AN+CP+CQ+BE+BD)+(MN+DE+PQ)}{(AM+AN+CP+CQ+BE+BD)+(ME+NP+DQ)}=1\)

(do \(MN+DE+PQ=ME+NP+DQ\) do tính chất các tiếp tuyến cắt nhau)

\(\Rightarrow R_1+R_2+R_3=R\) 

Ta có đpcm.

 

AH
Akai Haruma
Giáo viên
17 tháng 12 2020

Hình vẽ:

undefined

2 tháng 2 2022

đây là đề học sinh giỏi của tỉnh hải dương năm 2020-2021 ạ