Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) Xét tam giác ABC. Ta có:
Vì AD là tia phân giác của góc A nên:
\(\widehat{BAD}=\widehat{DAC}=\frac{\widehat{A}}{2}=40^{^o}\)
\(\widehat{ADB}=180^o-70^o-40^o=70^o\)
Vì \(\widehat{ADB}=\widehat{ABD}=70^o\)nên ABD là tam giác cân.
b)Vì \(\widehat{ADB}\)kề bù với \(\widehat{ADC}\)nên \(\widehat{ADC}=180^o-70^o=110^o\)
Do tam giác ACD là tam giác nên \(\widehat{ACD}=180^o-40^o-110^o=30^o\)
c) Đặt đỉnh ngoài của B là B1.
Ta có: \(\widehat{B_1}=180^o-70^o=110^o\)
xét tam giác ABC có A+B+C=180 (tổng 3 góc trong tam giác)
=> 60+70+C=180 => C=50
MÀ ACD=BCD=1/2 C( tia p/g CD của C )
=> ACD=BCD=1/2.50=25
a) \(B_1=A_1=70^o\)
\(\Rightarrow a//b\) (\(A_1\&B_1\)ở vị trí so le trong)
b) \(A_3=A_1=70^o\) (đối đỉnh)
\(A_4=180-A_1=180-70=110^o\) (góc kề bù)
Tương tự B3; B4...
a:\(\widehat{BAC}+\widehat{xAC}=180^0\)(hai góc kề bù)
=> \(\widehat{BAC}+70^0=180^0\)
=>\(\widehat{BAC}=110^0\)
Ta có: \(\widehat{BAC}+\widehat{ABD}=180^0\)
mà hai góc này là hai góc ở vị trí trong cùng phía
nên AC//BD
b: Vì AC//BD
nên \(\widehat{yCx}=\widehat{CDB}\)(hai góc đồng vị)
=>\(\widehat{yCx}=60^0\)
Ta có: \(\widehat{yCx}+\widehat{ACD}=180^0\)(hai góc kề bù)
=>\(\widehat{ACD}+60^0=180^0\)
=>\(\widehat{ACD}=120^0\)
Ta có: \(\widehat{BAC}+\widehat{ABD}=180^0\)(AC//BD)
=>\(\widehat{BAC}+70^0=180^0\)
=>\(\widehat{BAC}=110^0\)