Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Áp dụng công thức \(\left(\dfrac{1}{v}\right)'=\dfrac{-v'}{v^2}\)
Ta có \(y'=\dfrac{-\left(x^2+x-1\right)'}{\left(x^2+x-1\right)^2}=-\dfrac{\left(2x+1\right)}{\left(x^2+x-1\right)^2}\)
Đầu tiên cần phải định nghĩa rõ ràng "theo thứ tự" ở đây nghĩa là gì?
Theo thứ tự nếu mang nghĩa 12345 khác 54321 (thứ tự phải qua trái khác trái qua phải) thì xác suất là \(\dfrac{1}{120}\)
Còn "theo thứ tự" mang nghĩa 12345 cũng giống 54321 (thứ tự chiều trái phải như nhau) thì xác suất mới là \(\dfrac{1}{60}\)
\(u_n=1\)
=>\(n^2-10n+10=1\)
=>\(n^2-10n+9=0\)
=>(n-1)(n-9)=0
=>\(\left[{}\begin{matrix}n-1=0\\n-9=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}n=1\\n=9\end{matrix}\right.\)
Vậy: Có 2 giá trị của dãy (Un) cùng bằng 1
=>Chọn B
un=1
=>n^2-10n+9=0
=>(n-1)(n-9)=0
=>n=1 hoặc n=9
=>Chọn B
un=1
=>n^2-10n+9=0
=>(n-1)(n-9)=0
=>n=1 hoặc n=9
=>Chọn B
33.
\(\dfrac{1}{2}cos2x+\dfrac{\sqrt{3}}{2}sin2x=cosx\)
\(\Leftrightarrow cos\left(2x-\dfrac{\pi}{3}\right)=cosx\)
So sánh nó với \(cos\left(2x-a\right)=cosx\)
\(\Rightarrow a=\dfrac{\pi}{3}\)
34.
ĐKXĐ:
\(sinx-cosx\ne0\)
\(\Leftrightarrow tanx\ne1\)
\(\Leftrightarrow x\ne\dfrac{\pi}{4}+k\pi\)
35.
\(y=2\left(\dfrac{\sqrt{3}}{2}sinx-\dfrac{1}{2}cosx\right)-2=2sin\left(x-\dfrac{\pi}{6}\right)-2\)
Do \(-1\le sin\left(x-\dfrac{\pi}{6}\right)\le1\Rightarrow-4\le y\le0\)
Tập giá trị: \(\left[-4;0\right]\)
36.
\(y=cos2x\) tuần hoàn chu kì \(\dfrac{2\pi}{\left|2\right|}=\pi\)
\(y=sinx\) tuàn hoàn chu kì \(\dfrac{2\pi}{\left|1\right|}=2\pi\)
\(y=tan2x\) tuần hoàn chu kì \(\dfrac{\pi}{\left|2\right|}=\dfrac{\pi}{2}\)
\(y=cot4x\) tuần hoàn chu kì \(\dfrac{\pi}{\left|4\right|}=\dfrac{\pi}{4}\)
1.
\(\Leftrightarrow1+2sin\dfrac{x}{2}cos\dfrac{x}{2}+\sqrt{3}cosx=3\)
\(\Leftrightarrow sinx+\sqrt{3}cosx=2\)
\(\Leftrightarrow\dfrac{1}{2}sinx+\dfrac{\sqrt{3}}{2}cosx=1\)
\(\Leftrightarrow cos\left(x-\dfrac{\pi}{6}\right)=1\)
\(\Leftrightarrow x-\dfrac{\pi}{6}=k2\pi\)
\(\Leftrightarrow x=\dfrac{\pi}{6}+k2\pi\)
2.
\(cos2x=-1\)
\(\Leftrightarrow2x=\pi+k2\pi\)
\(\Leftrightarrow x=\dfrac{\pi}{2}+k\pi\)
3.
\(\left(2sinx-cosx\right)\left(1+cosx\right)=\left(1+cosx\right)\left(1-cosx\right)\)
\(\Leftrightarrow\left(1+cosx\right)\left(2sinx-1\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}cosx=-1\\sinx=\dfrac{1}{2}\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}x=\pi+k2\pi\\x=\dfrac{\pi}{6}+k2\pi\\x=\dfrac{5\pi}{6}+k2\pi\end{matrix}\right.\)
Nghiệm dương nhỏ nhất là \(x=\dfrac{\pi}{6}\)
4.
\(1-cos2x-1-cos6x=0\)
\(\Leftrightarrow cos6x=-cos2x=cos\left(\pi-2x\right)\)
\(\Leftrightarrow\left[{}\begin{matrix}6x=\pi-2x+k2\pi\\6x=2x-\pi+k2\pi\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}x=\dfrac{\pi}{8}+\dfrac{k\pi}{4}\\x=-\dfrac{\pi}{4}+\dfrac{k\pi}{2}\end{matrix}\right.\)
Pt có 6 nghiệm trên khoảng đã cho
6.
\(sin3x+cos2x=1+sin3x-sinx\)
\(\Leftrightarrow cos2x=1-sinx\)
\(\Leftrightarrow1-2sin^2x=1-sinx\)
\(\Leftrightarrow2sin^2x-sinx=0\)
\(\Leftrightarrow\left[{}\begin{matrix}sinx=0\\sinx=\dfrac{1}{2}\end{matrix}\right.\)
7.
\(\sqrt{2}sinx-2\sqrt{2}cosx=2-2sinx.cosx\)
\(\Leftrightarrow\sqrt{2}sinx\left(\sqrt{2}cosx+1\right)-2\left(\sqrt{2}cosx+1\right)=0\)
\(\Leftrightarrow\left(\sqrt{2}sinx-2\right)\left(\sqrt{2}cosx+1\right)=0\)
\(\Leftrightarrow cosx=-\dfrac{\sqrt{2}}{2}\)
\(\Leftrightarrow x=\pm\dfrac{3\pi}{4}+k2\pi\)
\(\left(\dfrac{3\pi}{4}\right).\left(-\dfrac{3\pi}{4}\right)=-\dfrac{9\pi^2}{16}\)
8.
\(2sinx.cosx+3cosx=0\)
\(\Leftrightarrow cosx\left(2sinx+3\right)=0\)
\(\Leftrightarrow cosx=0\)
\(\Rightarrow x=\dfrac{\pi}{2}+k\pi\)
\(\Rightarrow x=\dfrac{\pi}{2}\) có 1 nghiệm trong khoảng đã cho
9.
\(cos2x\ne0\Leftrightarrow2x\ne\dfrac{\pi}{2}+k\pi\)
\(\Rightarrow x\ne\dfrac{\pi}{4}+\dfrac{k\pi}{2}\)
Đáp án D
Câu 15: Dựa vào đồ thị ta thấy, khi x=0, x=\(2\pi\) thì hàm số đạt giá trị là 1, đồng thời tại các giá trị x=\(\pm\pi\) thì hàm số có giá trị là 0. Quan sát đáp án ta thấy chỉ có hàm số y=sinx là thỏa mãn có điều kiện trên nên đáp án là C.
Câu 16: Tương tự, dựa vào đồ thị ta thấy, khi x=0 thì hàm số có giá trị là 2, khi x=\(\pm\pi\) thì hàm số đạt giá trị là 0. Quan sát đáp án ta thấy chỉ có 2-sinx là thỏa mãn. Vậy đáp án là B.