Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Câu 1:\(\dfrac{15-x}{5-x}\) điều kiện \(x\ne5\)
Để \(\dfrac{15-x}{5-x}\) đạt giá trị lớn nhất thì \(5-x\) là số nguyên dương nhỏ nhất có thể.
\(\Rightarrow5-x=1\Rightarrow x=4\)
Thay vào ta có: \(\dfrac{15-4}{5-4}=\dfrac{11}{1}=11\)
Vậy GTLN của biểu thức là 11 đạt được khi và chỉ khi \(x=4\)
Câu 2: \(\dfrac{5x-19}{x-4}\) (điều kiện \(x\ne4\))
Để \(\dfrac{5x-19}{x-4}\) đạt giá trị nhỏ nhất thì \(x-4\) là số nguyên âm lớn nhất có thể.
\(\Rightarrow x-4=-1\Rightarrow x=3\)
Thay vào ta có: \(\dfrac{5x-19}{x-4}=\dfrac{5.3-19}{3-4}=\dfrac{15-19}{-1}=\dfrac{-4}{-1}=4\)
Vậy GTNN của biểu thức là 4 đạt được khi và chỉ khi x=3
Chúc bạn học tốt!!!
\(\dfrac{15-x}{5-x}\)
\(MAX_{\dfrac{15-x}{5-x}}\Rightarrow\dfrac{15-x}{5-x}\in Z^+;5-x_{MIN}\)
\(\Rightarrow5-x=1\)
\(\Rightarrow x=4\)
\(\Rightarrow MAX_{\dfrac{15-x}{5-x}}=\dfrac{15-4}{5-4}=11\)
a: Bổ sung đề OA=OB
Xét ΔAOC và ΔBOC có
OC chung
OA=OB
AC=BC
Do đó: ΔAOC=ΔBOC
Xét ΔOAD và ΔOBD có
OA=OB
OD chung
AD=BD
Do đó ΔOAD=ΔOBD
b: Ta có: OA=OB
nên O nằm trên đường trung trực của AB(1)
Ta có: CA=CB
nên C nằm trên đường trung trực của AB(2)
Ta có: DA=DB
nên D nằm trên đường trung trực của AB(3)
Từ (1), (2) và (3) suy ra O,C,D thẳng hàng
Vì OA = AB = OC = CD
=> OD = OB
Xét \(\Delta OAD\)và \(\Delta OCB\)có:
OA = OC (gt)
\(\widehat{O}\)(chung)
OD = OB (cmt)
Do đó: \(\Delta OAD=\Delta OCB\) (c-g-c)
=> \(\widehat{ODA}=\widehat{OBC}\) (2 cạnh tương ứng)
=> \(\widehat{OCB}=\widehat{OAD}\) (2 cạnh tương ứng)
Vì \(\widehat{OCB}=\widehat{OAD}\) mà \(\widehat{OCB}+\widehat{DCB}=180^0\)(kề bù)
và \(\widehat{OAD}+\widehat{DAB}=180^0\)(kề bù)
Do đó: \(\widehat{DAB}=\widehat{BCD}\)
Xét \(\Delta KAB\)và \(\Delta KCD\)có:
\(\widehat{ODA}=\widehat{OBC}\)(cmt)
AB = CD (gt)
\(\widehat{CDK}=\widehat{ABK}\left(\widehat{ODA}=\widehat{OBC}\right)\)
Do đó: \(\Delta KAB=\Delta KCD\left(g-c-g\right)\)
=> CK = KA (2 cạnh tương ứng)
Xét \(\Delta OCK\)và\(\Delta OAK\)có:
CK = KA(cmt)
OK (chung)
OA = OC (gt)
Do đó: \(\Delta OCK=\Delta OAK\left(c-c-c\right)\)
=> \(\widehat{COK}=\widehat{AOK}\) ( 2 góc tương ứng )
=> OK là tia phân giác \(\widehat{O}\)
A B D H E C 1 2 3 4
Giải:
a) Xét \(\Delta ACH,\Delta DCH\)có:
HA = HD ( gt )
\(\widehat{H_1}=\widehat{H_2}=90^o\)
HC: cạnh chung
\(\Rightarrow\Delta ACH=\Delta DCH\left(c-g-c\right)\) ( đpcm )
b) Xét \(\Delta HED,\Delta HBA\) có:
HD = HA ( gt )
\(\widehat{H_2}=\widehat{H_4}=90^o\)
HE = HB ( gt )
\(\Rightarrow\Delta HED=\Delta HBA\left(c-g-c\right)\) ( đpcm )
b) Xét \(\Delta BHD,\Delta EHA\) có:
\(BH=EH\left(gt\right)\)
\(\widehat{H_3}=\widehat{H_1}=90^o\)
\(HD=HA\left(gt\right)\)
\(\Rightarrow\Delta BHD=\Delta EHA\left(c-g-c\right)\)
\(\Rightarrow BD=AE\) ( cạnh t/ứng )
Mà \(BE+DC>BC\)
\(\Rightarrow AE+DC>BC\left(đpcm\right)\)
Vậy...
c thôi nha
Ta có : AE = AB (vì tam giác HED bằng tam giác HBA )(1)
và CD = AC (vì tam ACH bằng tam giác DCH )(2)
Từ (1)và (2) suy ra AE+CD=AB+AC(*)
Lại có AB+AC > BC (vì tổng số đo 2 cạnh của tam giác luôn luôn lớn hơn cạnh thứ 3)(**)
Từ (*)và (**) suy ra AE+CD>BC(đpcm)
Chứng minh
a, Xét \(\Delta MAB\) và \(\Delta MDC\) có :
MA = MD (gt)
\(\widehat{AMB}=\widehat{DMC}\) ( đối đỉnh )
MB = MC (gt)
\(\Rightarrow\Delta MAB=\Delta MDC\left(c.g.c\right)\)
b, \(\Delta MAB=\Delta MDC\) (câu a)
\(\Rightarrow\widehat{BAM}=\widehat{CDM}\) ( ở vị trí so le trong)
\(\Rightarrow\) AB // CD
\(\Rightarrow\widehat{BAC}+\widehat{ACD}=180^O\)
\(\Rightarrow90^O+\widehat{ACD}=180^O\)
\(\Rightarrow\widehat{ACD}=90^O\)
\(\Rightarrow\Delta ACD\) vuông tại C
câu c nè ( hơi lằng nhằng chút nha )
Chứng minh
c, \(\Delta MAB=\Delta MDC\) ( câu a )
\(\Rightarrow AB=CD\) ( hai cạnh tương ứng )
Xét \(\Delta KAB\) và \(\Delta KCD\) có :
AK = CK (gt)
\(\widehat{KAB}=\widehat{KCD}\) (=1v)
AB = CD (c/m trên)
\(\Rightarrow\Delta KAB=\Delta KCD\) (c.g.c)
\(\Rightarrow KB=KD\) (hai cạnh tương ứng)
và \(\widehat{AKB}=\widehat{CKD}\) (hai góc tương ứng)
\(\Rightarrow\widehat{AKB}+\widehat{BKD}=\widehat{CKD}+\widehat{BKD}\) hay \(\widehat{AKD}=\widehat{CKB}\)
Xét \(\Delta AKD\) và \(\Delta CKB\) có :
AK = CK (gt)
\(\widehat{AKD}=\widehat{CKB}\) (c/m trên )
KD = KB ( c/m trên )
\(\Rightarrow\Delta AKD=\Delta CKB\) (c.g.c)
\(\Rightarrow\widehat{ADK}=\widehat{CBK}\) ( hai góc tương ứng )
Xét \(\Delta IKB\) và \(\Delta NKD\) có :
\(\widehat{BKD}\) chung
KB = KD (c/m trên )
\(\widehat{KBI}=\widehat{KDN}\) (c/m trên )
\(\Rightarrow\Delta IKB=\Delta NKD\) (g.c.g)
\(\Rightarrow KI=KN\) (hai cạnh tương ứng )
\(\Rightarrow\Delta KIN\) cân
Là ở đâu?
Ở linh trên