Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
với bài này không cần nhân ra:
<=> (4x-3)^2+3x(4x-3)=0
\(\Leftrightarrow\orbr{\begin{cases}4x-3=0\Leftrightarrow x=\frac{3}{4}\\4x-3+3x=0\Leftrightarrow x=\frac{3}{7}\end{cases}}\)
\(\left(-3x-2\right)^2+\left(3x+5\right)\left(5-3x\right)=-7\)
\(\Leftrightarrow9x^2+12x+4+15x-9x^2+25-15x=-7\)
\(\Leftrightarrow12x+36=0\Leftrightarrow x=-3\)
\(\left(x+2\right)\left(x^2+2x+2\right)-x\left(x-8\right)^2=\left(4x-3\right)\left(4x+3\right)\)
\(\Leftrightarrow x^3+2x^2+2x+2x^2+4x+4-x\left(x^2-16x+64\right)=16x^2-9\)
\(\Leftrightarrow x^3+4x^2+6x+4-x^3+16x^2-64=16x^2-9\)
\(\Leftrightarrow4x^2+6x-51=0\)
\(\cdot\Delta=6^2-4.4.\left(-51\right)=852\)
Vậy pt có 2 nghiệm phân biệt
\(x_1=\frac{-6+\sqrt{852}}{8}\);\(x_2=\frac{-6-\sqrt{852}}{8}\)
\(A=-x^2+3x-5\)\(=-\dfrac{11}{4}-\left(x^2-2.\dfrac{3}{2}x+\dfrac{9}{4}\right)=-\dfrac{11}{4}-\left(x-\dfrac{3}{2}\right)^2\le-\dfrac{11}{4}\) với mọi x
\(\Rightarrow A_{max}=-\dfrac{11}{4}\Leftrightarrow x-\dfrac{3}{2}=0\Leftrightarrow x=\dfrac{3}{2}\)
\(B=5x-4x^2-3=-\dfrac{23}{16}-\left(4x^2-2.\dfrac{5}{4}.2x+\dfrac{25}{16}\right)\)\(=-\dfrac{23}{16}-\left(2x-\dfrac{5}{4}\right)^2\)\(\le-\dfrac{23}{16}\forall x\)
\(\Rightarrow B_{max}=-\dfrac{23}{16}\Leftrightarrow2x-\dfrac{5}{4}=0\Leftrightarrow x=\dfrac{5}{8}\)
\(C=5-4x-25x^2=\dfrac{129}{25}-\left(25x^2+2.5x.\dfrac{2}{5}+\dfrac{4}{25}\right)\)\(=\dfrac{129}{25}-\left(5x+\dfrac{2}{5}\right)^2\le\dfrac{129}{25}\forall x\)
\(\Rightarrow C_{max}=\dfrac{129}{25}\Leftrightarrow5x+\dfrac{2}{5}=0\Leftrightarrow x=-\dfrac{2}{25}\)
\(D=3x-2x^2=-2\left(x^2-\dfrac{3}{2}x\right)=-2\left(x^2-2.\dfrac{3}{4}x+\dfrac{9}{16}\right)+\dfrac{9}{8}\)\(=\dfrac{9}{8}-2\left(x-\dfrac{3}{4}\right)^2\le\dfrac{9}{8}\) với mọi x
\(\Rightarrow D_{max}=\dfrac{9}{8}\Leftrightarrow x-\dfrac{3}{4}=0\Leftrightarrow x=\dfrac{3}{4}\)
\(E=2+6x-\dfrac{1}{4}x^2=-\dfrac{1}{4}\left(x^2-24x\right)+2=-\dfrac{1}{4}\left(x^2-2.12x+144\right)+38\)\(=38-\dfrac{1}{4}\left(x-12\right)^2\le38\forall x\)
\(\Rightarrow E_{max}=38\Leftrightarrow x-12=0\Leftrightarrow x=12\)
\(F=-5x^2+4x=-5\left(x^2-\dfrac{4}{5}x\right)=-5\left(x^2-2.\dfrac{2}{5}x+\dfrac{4}{25}\right)+\dfrac{4}{5}\)\(=\dfrac{4}{5}-5\left(x-\dfrac{2}{5}\right)^2\le\dfrac{4}{5}\forall x\)
\(\Rightarrow F_{max}=\dfrac{4}{5}\Leftrightarrow x-\dfrac{2}{5}=0\Leftrightarrow x=\dfrac{2}{5}\)
2:
=>x^3-1-2x^3-4x^6+4x^6+4x=6
=>-x^3+4x-7=0
=>x=-2,59
4: =>8x-24x^2+2-6x+24x^2-60x-4x+10=-50
=>-62x+12=-50
=>x=1
Bài 1:
a) \(8\left(x-2\right)-2\left(3x-4\right)=2\)
\(\Rightarrow2\left[4\left(x-2\right)-\left(3x-4\right)\right]=2\)
\(\Rightarrow4\left(x-2\right)-3x+4=0\)
\(\Rightarrow4x-8-3x+4=0\)
\(\Rightarrow x-4=0\)
\(\Rightarrow x=4\)
b) \(10\left(3x-2\right)-3\left(5x+2\right)+5\left(11-4x\right)=25\)
\(\Rightarrow5\left[2\left(3x-2\right)+11-4x\right]-3\left(5x+2\right)=25\)
\(\Rightarrow5\left(6x-4+11-4x\right)-3\left(5x+2\right)=25\)
\(\Rightarrow5\left(2x+7\right)-3\left(5x+2\right)=25\)
\(\Rightarrow10x+35-15x-6=25\)
\(\Rightarrow-5x+29=25\)
\(\Rightarrow-5x=25-29\)
\(\Rightarrow-5x=-4\)
\(\Rightarrow x=\dfrac{4}{5}\)
c) \(2x\left(x+1\right)-x^2\left(x+2\right)+x^3-x+4=0\)
\(\Rightarrow2x^2+2x-x^3-2x^2+x^3-x+4=0\)
\(\Rightarrow x+4=0\)
\(\Rightarrow x=-4\)
d) \(4x\left(3x+2\right)-6x\left(2x+5\right)+21\left(x-1\right)=0\)
\(\Rightarrow12x^2+8x-12x^2-30x+21x-21=0\)
\(\Rightarrow-x-21=0\)
\(\Rightarrow x=-21\)
Bài 2:
a) \(P=\left(4x^2-3y\right)2y-\left(3x^2-4y\right)3y\)
\(P=8x^2y-6y^2-9x^2y+12y^2\)
\(P=-x^2y+6y^2\)
Thay x = -1 ; y = 2 vào P ta được
\(P=-\left(-1\right)^2.2+6.2^2\)
\(P=-2+24=22\)
b) \(Q=4x^2\left(5x-3y\right)-x^2\left(4x+y\right)\)
\(Q=20x^3-12x^2y-4x^3-x^2y\)
\(Q=16x^3-13x^2y\)
Thay x = -1 ; y = 2 vào Q ta được
\(Q=16\left(-1\right)^3-13\left(-1\right)^2.2\)
\(Q=-16-26\)
\(Q=-42\)
c) \(H=x\left(x^3-y\right)+x^2\left(y-x^2\right)-y\left(x^2-3x\right)\)
\(H=x^4-xy+x^2y-x^4-x^2y+3xy\)
\(H=2xy\)
Thay x = 1/4 ; y = 2012 vào H ta được
\(H=2.\dfrac{1}{4}.2012\)
\(H=1006\)
1.a)\(8\left(x-2\right)-2\left(3x-4\right)=2\)
\(\Leftrightarrow8x-16-6x+8=2\)
\(\Leftrightarrow2x-8=2\Leftrightarrow2x=10\Leftrightarrow x=5\)
b)\(10\left(3x-2\right)-3\left(5x+2\right)+5\left(11-4x\right)=25\)
\(\Leftrightarrow30x-20-15x-6+55-20x=25\)
\(\Leftrightarrow-5x+29=25\Leftrightarrow-5x=-4\Leftrightarrow x=\dfrac{4}{5}=0,8\)
\(c)2x\left(x+1\right)-x^2\left(x+2\right)+x^3-x+4=0\)
\(\Leftrightarrow2x^2+2x-x^3-2x^2+x^3-x+4=0\)
\(\Leftrightarrow x+4=0\Leftrightarrow x=-4\)
\(d)4x\left(3x+2\right)-6x\left(2x+5\right)+21\left(x-1\right)=0\)
\(\Leftrightarrow12x^2+8x-12x^2-30x+21x-21=0\)
\(\Leftrightarrow-x-21=0\Leftrightarrow-x=21\Leftrightarrow x=-21\)
2.
a)\(P=\left(4x^2-3y\right)2y-\left(3x^2-4y\right)3y\)
\(\Leftrightarrow8x^2y-6y^2-9x^2y-12y^2\)
\(\Leftrightarrow x^2y-18y^2\)
tại x=-1 , y=2
ta có:\(x^2y-18y^2=\left(-1\right)^2.2-18.2^2=2-72=-70\)
vậy \(P=\left(4x^2-3y\right)2y-\left(3x^2-4y\right)3y=-70\) tại x=-1,y=2
b)\(Q=4x^2\left(5x-3y\right)-x^2\left(4x+y\right)\)
\(\Leftrightarrow20x^3-12x^2y-4x^3-x^2y\)
\(\Leftrightarrow17x^3-13x^2y\)
tại x=-1,y=2
ta có:\(17x^3-13x^2y=17\left(-1\right)^3-13\left(-1\right)^2.2=-17-26=-43\)
vậy \(Q=4x^2\left(5x-3y\right)-x^2\left(4x+y\right)=-43\)
c)\(H=x\left(x^3-y\right)+x^2\left(y-x^2\right)-y\left(x^2-3x\right)\)
\(\Leftrightarrow x^4-xy+x^2y-x^3-x^2y+3xy\)
\(\Leftrightarrow x^4+2xy-x^3\)
tại x=1/4 và y=2012
ta có:\(x^4+2xy-x^3=\left(\dfrac{1}{4}\right)^4+2.\dfrac{1}{4}.2012-\left(\dfrac{1}{4}\right)^3\approx1006\)
a: (3x-2)(4x+5)=0
=>3x-2=0 hoặc 4x+5=0
=>x=2/3 hoặc x=-5/4
b: (2,3x-6,9)(0,1x+2)=0
=>2,3x-6,9=0 hoặc 0,1x+2=0
=>x=3 hoặc x=-20
c: =>(x-3)(2x+5)=0
=>x-3=0 hoặc 2x+5=0
=>x=3 hoặc x=-5/2
c: Ta có: \(x^3+3x^2+3x-7=0\)
\(\Leftrightarrow x+1=2\)
hay x=1
b: Ta có: \(x\left(x-3\right)-4x+12=0\)
\(\Leftrightarrow\left(x-3\right)\left(x-4\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x=3\\x=4\end{matrix}\right.\)
(4x - 3)2 - 3x(3 - 4x) = 0
= (4x - 3)2 + 3x(4x - 3)
= (4x - 3)(4x - 3 + 3x)
= (4x - 3)(7x - 3).