K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

23 tháng 10 2023

\(u_n=1\)

=>\(n^2-10n+10=1\)

=>\(n^2-10n+9=0\)

=>(n-1)(n-9)=0

=>\(\left[{}\begin{matrix}n-1=0\\n-9=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}n=1\\n=9\end{matrix}\right.\)

Vậy: Có 2 giá trị của dãy (Un) cùng bằng 1

=>Chọn  B

un=1

=>n^2-10n+9=0

=>(n-1)(n-9)=0

=>n=1 hoặc n=9

=>Chọn B

19 tháng 9 2023

un =1 

=> n^2 -10n+9=0

=>(n=1)(n-9)=0

=>n=1 hoặc n=9

=>chọn B

19 tháng 9 2023

\(u_n=3n+1\left(n\in N^{\cdot}\right)\) là công thức tổng quát của dãy \(\left(u_n\right)\) mà mỗi số hạng của nó là số tự nhiên chia hết cho 3 dư 1 nên chọn câu A

19 tháng 9 2023

Nguyễn Đức Trí                                                         , ý B và D vẫn đúng mà nhỉ?

\(U_n\) có chữ số tận cùng là 7

=>\(5n+2\) có chữ số tận cùng là 7

=>5n có chữ số tận cùng là 5

=>n lẻ

Số lượng số lẻ trong dãy số từ 10;11;...;2023 là:

\(\dfrac{\left(2023-11\right)}{2}+1=1007\left(số\right)\)

=>Trong dãy này có 1007 số hạng có tận cùng là 7

17 tháng 5 2017

Đáp án C

30 tháng 8 2023

a) Để tính các số hạng u1, u2, u3, u4 của dãy (un), ta thay n = 1, 2, 3, 4 vào công thức un = n^2 - 1:

u1 = 1^2 - 1 = 0 u2 = 2^2 - 1 = 3 u3 = 3^2 - 1 = 8 u4 = 4^2 - 1 = 15

Vậy u1 = 0, u2 = 3, u3 = 8, u4 = 15.

b) Để tìm số hạng thứ mấy trong dãy có giá trị 99, ta giải phương trình n^2 - 1 = 99:

n^2 - 1 = 99 n^2 = 100 n = 10 hoặc n = -10

Vì số hạng của dãy phải là số tự nhiên nên ta chọn n = 10. Vậy số hạng thứ mấy có giá trị 99 là u10.

a) Để tính các số hạng u1, u2, u3, u4 của dãy (un), ta thay n = 1, 2, 3, 4 vào công thức un = (2n - 1)/(n + 1):

u1 = (21 - 1)/(1 + 1) = 1/2 u2 = (22 - 1)/(2 + 1) = 3/3 = 1 u3 = (23 - 1)/(3 + 1) = 5/4 u4 = (24 - 1)/(4 + 1) = 7/5

Vậy u1 = 1/2, u2 = 1, u3 = 5/4, u4 = 7/5.

b) Để tìm số hạng thứ mấy trong dãy có giá trị 137137, ta giải phương trình (2n - 1)/(n + 1) = 137137:

(2n - 1)/(n + 1) = 137137 2n - 1 = 137137(n + 1) 2n - 1 = 137137n + 137137 137135n = 137138 n = 1

Vậy số hạng thứ mấy có giá trị 137137 là u1.

21 tháng 9 2017

Chọn D

18 tháng 11 2023

Để \(u_n\) nguyên thì \(n^2+3n+7⋮n+1\)

=>\(n^2+n+2n+2+5⋮n+1\)

=>\(5⋮n+1\)

=>\(n+1\in\left\{1;-1;5;-5\right\}\)

=>\(n\in\left\{0;-2;4;-6\right\}\)

Vậy: \(u_n\) có 4 số hạng nhận giá trị nguyên

18 tháng 11 2023

u_n chỉ có 1 số hạng nhận giá trị nguyên.

19 tháng 6 2017

Chọn B.

- Ta có,  u 1   =   5  và  u n + 1   =   3   +   u n  nên dãy số là cấp số cộng với công sai d = 3, số hạng đầu u 1   =   5 .

- Do đó số hạng tổng quát của dãy số này là:

Đề thi Học kì 2 Toán 11 có đáp án (Đề 1)