K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

15 giờ trước (9:43)

a: Gọi D là giao điểm của BM và AC

Xét ΔABD có AB+AD>BD

=>AB+AD>BM+MD

Xét ΔMDC có MD+DC>MC

Do đó; AB+AD+MD+DC>BM+MD+MC

=>AB+AC+MD>BM+MC+MD

=>AB+AC>BM+MC

b: Gọi E,F lần lượt là giao điểm của MN với AB và AC

Xét ΔBEM có BM<BE+EM

Xét ΔCFN có CN<CF+FN

Xét ΔAEF có EF<AE+AF

Ta có: BM<BE+EM

CN<CF+FN

Do đó: BM+CN<BE+EM+CF+FN

=>BE+EM+CF+FN>BM+CN

=>BE+EM+CF+FN+MN>BM+CN+MN

=>BE+CF+EF>BM+CN+MN

=>BM+CN+MN<BE+CF+EF

mà BE+CF+EF<BE+CF+AE+AF=(BE+AE)+(AF+AC)=AB+AC

nên BM+CN+MN<AB+AC

8 tháng 3 2019

a, vì M nằm ở trong tam giác ABC nên MC và MB nằm ở trong tam giác ABC 

   =) MC va MB lần lượt chia  góc C và B làm 2 nửa

    =) ^B = ^B1+ ^B2                             ^C= ^C1+^C2

      theo quan hệ giứa góc và cạnh đối diên có

                  ab tương ứng vs góc C, ac tương ứng vs góc B

                    MB .........................C1, MC                          B2

     CÓ : ^B+^C > ^B2+^C2

      =) AB+AC > MB+MC ( THEO QUAN HỆ GIỮA GÓC VÀ CẠNH ĐỐI DIỆN)

CON B THÌ CHỊU NHÉ 

8 tháng 3 2019

A B C M

a) Làm như bạn ly

b)Từ câu a) suy ra MB + MC < AB + AC;MA+MB < AC + BC

MA + MC < AB + BC

Cộng theo vế suy ra: \(2\left(MA+MB+MC\right)< 2\left(AB+BC+CA\right)\)

Suy ra \(MA+MB+MC< AB+BC+CA\) (1)

Mặt khác,áp dụng BĐT tam giácL

MB + MC > BC.Tương tự với hai BĐT còn lại và cộng theo vế: \(2\left(MA+MB+MC\right)>AB+BC+CA\)

Chia hai vế cho 2: \(MA+MB+MC>\frac{AB+BC+CA}{2}\)

6 tháng 7 2019

B M I A C

a) Ta lần lượt xét:

  • Trong \(\Delta AMI\), ta có:

                              \(MA< IA+IM\Leftrightarrow MA+MB< IA+IM+MB\)

                             \(\Leftrightarrow MA+MB< IA+IB\)                (1)

  • Trong \(\Delta BIC\),ta có:

                              \(IB< CI+CB\Leftrightarrow IA+IB< IA+CI+CB\)

                              \(\Leftrightarrow IA+IB< CA+CB\)                 (2)

Từ (1), (2), ta nhận được  \(MA+MB< IA+IB< CA+CB,đpcm\)

b) Ta lần lượt xét:

  • Trong \(\Delta MAB\), ta có \(MA+MB>AB\left(3\right)\)
  • Trong \(\Delta MBC\), ta có \(MB+MC>BC\left(4\right)\)
  • Trong \(\Delta MAC,\)ta có \(MA+MC>AC\left(5\right)\)

Cộng theo vế (3),(4),(5), ta được:

\(2\left(MA+MB+MC\right)>AB+BC+AC\)

\(\Leftrightarrow MA+MB+MC>\frac{1}{2}\left(AB+BC+AC\right),đpcm.\)

Mặt khác dựa theo kết quả cua câu a), ta có:

\(MA+MB< CA+CB\left(6\right)\)

\(MB+MC< AB+AC\left(7\right)\)

\(MA+MC< BA+BC\left(8\right)\)

Cộng theo vế (6),(7),(8), ta được:

\(2\left(MA+MB+MC\right)< 2\left(AB+BC+AC\right)\)

\(\Leftrightarrow MA+MB+MC< AB+BC+AC,đpcm.\)

a: Xét ΔAHB vuông tại H và ΔAHK vuông tại H có

AH chung

HB=HK

Do đó: ΔAHB=ΔAHK

=>\(\hat{BAH}=\hat{KAH}\)

=>AH là phân giác của góc BAK

c: Xét ΔABD vuông tại A có AB=AD

nên ΔABD vuông cân tại A

=>\(\hat{ABD}=\hat{ADB}=45^0\)

Xét tứ giác ABDE có \(\hat{BED}=\hat{BAD}=90^0\)

nên ABDE là tứ giác nội tiếp

=>\(\hat{ABD}+\hat{AED}=180^0\)

=>\(\hat{AED}=180^0-45^0=135^0\)

28 tháng 6 2020

A B C M N H E D I I

Xét \(\Delta ABM\)và \(\Delta NDM\)có: \(\hept{\begin{cases}\widehat{A}=\widehat{DNM}=90^o\left(gt\right)\\MB=MD\left(gt\right)\\\widehat{AMB}=\widehat{NMD}\end{cases}}\Rightarrow\Delta ABM=\Delta NDM\left(ch-gn\right)\left(đpcm\right)\)

Ta có \(\widehat{ABM}=\widehat{NDM}\left(\Delta ABM=\Delta NDM\right)\)

\(\widehat{ABM}=\widehat{CBM}\)(BM là phân giác \(\widehat{B}\))

\(\Rightarrow\widehat{NDM}=\widehat{CBM}\)hay \(\widehat{EDB}=\widehat{EBD}\)

\(\Rightarrow\Delta BED\)cân tại E

=> BE=DE (đpcm)

Kẻ MH vuông góc với BC tại H

Ta có MH=MA (vì BM là tia phân giác của \(\widehat{B}\))

và MA=MN (\(\Delta ABM=\Delta NDM\)

=> MN=MH

Xét \(\Delta MHC\)vuông tại H có MH<MC (vì MC là cạnh huyền)

=> MN<MC (đpcm)